Posts

CEM, champs électro-magnétiques, EMF, electromagnetic fields

How can we assess the health risks associated with exposure to electromagnetic fields?

As partners of the European SEAWave project, Télécom Paris and the C2M Chair are developing innovative measurement techniques to respond to public concern about the possible effects of cell phone usage. Funded by the EU to the tune of €8 million, the project will be launched in June 2022 for a period of 3 years. Interview with Joe Wiart, holder of the C2M Chair (Modeling, Characterization and Control of Electromagnetic Wave Exposure).

Could you remind us of the context in which the call for projects ‘Health and Exposure to Electromagnetic Fields (EMF)’ of the Horizon Europe program was launched?

Joe Wiart – The exponential use of wireless communication devices, throughout Europe, comes with a perceived risk associated with electromagnetic radiation, despite the existing protection thresholds (Recommendation 1999/519/CE and Directive 2013/35/UE). With the rollout of 5G, these concerns have multiplied. The Horizon Europe program will help to address these questions and concerns, and will study the possible impacts on specific populations, such as children and workers. It will intensify studies on millimeter-wave frequencies and investigate compliance analysis methods in these frequency ranges. The program will look at the evolution of electromagnetic exposure, as well as the contribution of exposure levels induced by 5G and new variable beam antennas. It will also investigate tools to better assess risks, communicate, and respond to concerns.

What is the challenge of SEAWave, one of the four selected projects, of which Télécom Paris is a partner?

JW – Currently, there is a lot of work, such as that of the ICNIRP (International Commission on Non-Ionizing Radiation Protection), that has been done to assess the compliance of radio-frequency equipment with protection thresholds. This work is largely based on conservative methods or models. SEAWave will contribute to these approaches in exposure to millimeter waves (with in vivo and in vitro studies). These approaches, by design, take the worst-case scenarios and overestimate the exposure. Yet, for a better control of possible impacts, as in epidemiological studies, and without underestimating conservative approaches, it is necessary to assess actual exposure. The work carried out by SEAWave will focus on establishing potentially new patterns of use, estimating associated exposure levels, and comparing them to existing patterns. Using innovative technology, the activities will focus on monitoring not only the general population, but also specific risk groups, such as children and workers.

What scientific contribution have Télécom Paris researchers made to this project that includes eleven Work Packages (WP)?

JW – The C2M Chair at Télécom Paris is involved in the work of four interdependent WPs, and is responsible for WP1 on EMF exposure in the context of the rollout of 5G. Among the eleven WPs, four are dedicated to millimeter waves and biomedical studies, and four others are dedicated to monitoring the exposure levels induced by 5G. The last three are dedicated to project management, but also to tools for risk assessment and communication. The researchers at Télécom Paris will mainly be taking part in the four WPs dedicated to monitoring the exposure levels induced by 5G. They will draw on measurement campaigns in Europe, networks of connected sensors, tools from artificial neural networks and, more generally, methods from Artificial Intelligence.

What are the scientific obstacles that need to be overcome?

JW – For a long time, assessing and monitoring exposure levels has been based on deterministic methods. With the increasing complexity of networks, like 5G, but also with the versatility of uses, these methods have reached their limits. It is necessary to develop new approaches based on the study of time series, statistical methods, and Artificial Intelligence tools applied to the dosimetry of radio frequency fields. Télécom Paris has been working in this field for many years; this expertise will be essential in overcoming the scientific obstacles that SEAWave will face.

The SEAWave consortium has around 15 partners. Who are they and what are your collaborations?

JW – These partners fall into three broad categories. The first is related to engineering: in addition to Télécom Paris, there is, for example, the Aristotle University of Thessaloniki (Greece), the Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (Italy), Schmid & Partner Engineering AG (Switzerland), the Foundation for Research on Information Technologies in Society (IT’IS, Switzerland), the Interuniversity Microelectronics Centre (IMEC, Belgium), and the CEA (France). The second category concerns biomedical aspects, with partners such as the IU Internationale Hochschule (Germany), Lausanne University Hospital (Switzerland), and the Fraunhofer-Institut für Toxikologie und Experimentelle Medizin (Germany). The last category is dedicated to risk management. It includes the International Agency for Research on Cancer (IARC, France), the Bundesamt für Strahlenschutz (Germany) and the French National Frequency Agency (ANFR, France).

We will mainly collaborate with partners such as the Aristotle University of Thessaloniki, the CEA, the IT’IS Foundation and the IMEC, but also with the IARC and the ANFR.

The project will end in 2025. In the long run, what are the expected results?

JW – First of all, tools to better control the risk and better assess the exposure levels induced by current and future wireless communication networks. All the measurements that will have been carried out will provide a good characterization of the exposure for specific populations (e.g. children, workers) and will lay the foundations for a European map of radio frequency exposure.

Interview by Véronique Charlet

Planning for the worst with artificial intelligence

Given that catastrophic events are rare by nature, it is difficult to prepare for them. However, artificial intelligence offers high-performing tools for modeling and simulation, and is therefore an excellent tool to design, test and optimize the response to such events. At IMT Mines Alès, Satya Lancel and Cyril Orengo are both undertaking research on emergency evacuations, in case of events like a dam breaking or a terrorist attack in a supermarket.

“Supermarkets are highly complex environments in which individuals are saturated with information,” explains Satya Lancel, PhD student in Risk Science at Université Montpellier III and IMT Mines Alès. Her thesis, which she started over two years ago, is on the subject of affordance, a psychological concept that states that an object or element in the environment is able to suggest its own use. With this research, she wishes to study the link between the cognitive processes involved in decision-making and the functionality of objects in their environment.

In her thesis, Lancel specifically focuses on affordance in the case of an armed attack within a supermarket. She investigates, for example, how to optimize instructions to encourage customers to head towards emergency evacuation exits. “The results of my research could act as a foundation for future research and be used by supermarket brands to improve signage or staff training, in order to improve evacuation procedures”, she explains.

Lancel and her team obtained funding from the brand U to perform their experiments. This agreement allowed them to study the situational and cognitive factors involved in customer decision-making in several U stores. “One thing we did in the first part of my research plan was to observe customer behavior when we added or removed flashing lights at the emergency exits,” she describes. “We remarked that when there was active signage, customers are more likely to decide to head towards the emergency exits than when there was not,” says the scientist. This result suggests that signage has a certain level of importance in guiding people’s decision-making, even if they do not know the evacuation procedure in advance.

 “Given that it is forbidden to perform simulations of armed attacks with real people, we opted for a multi-agent digital simulation”, explains Lancel. What is unique about this kind of simulation is that each agent involved is conceptualized as an autonomous entity with its own characteristics and behavioral model. In these simulations, the agents interact and influence each other with their behavior. “These models are now used more and more in risk science, as they are proving to be extremely useful for analyzing group behavior,” she declares.

To develop this simulation, Lancel collaborated with Vincent Chapurlat, digital systems modeling researcher at IMT Mines Alès. “The model we designed is a three-dimensional representation of the supermarket we are working on,” she indicates. In the simulation, aisles are represented by parallepipeds, while customers and staff are represented by agents defined by points. By observing how agents gather and how the clusters they form move around, interact and organize themselves, it is possible to determine which group behaviors are most common in the event of an armed attack, no matter the characteristics of the individuals.

Representing the complexity of reality

Outside of supermarkets, Cyril Orengo, PhD student in Crisis Management at the Risk Science Laboratory at IMT Mines Alès, is studying population evacuation in the event of dam failure. The case study chosen by Orengo is the Sainte-Cécile-d’Andorge dam, near the city of Alès. Based on digital modeling of the Alès urban area and individuals, he plans to compare evacuation time for a range of scenarios and perform cartography of various city roads that are likely to be blocked. “One of the aims of this work is to build a knowledge base that could be used in the future by researchers working on preventive evacuations,” indicates the doctoral student.

He, too, has chosen to use a multi-agent system to simulate evacuations, as this method makes it possible to combine individual parameters with agents to produce situations that tend to be close to a credible reality. “Among the variables selected in my model are certain socio-economic characteristics of the simulated population,” he specifies. “In a real-life situation, an elderly person may take longer to go somewhere than a young person: the multi-agent system makes it possible to reproduce this,” explains the researcher.

To generate a credible simulation, “you first need to understand the preventive evacuation process,” underlines Orengo, specifying the need “to identify the actors involved, such as citizens and groups, as well as the infrastructure, such as buildings and traffic routes, in order to produce a model to act as a foundation to develop the digital simulation”. As part of his work, the PhD student analyzed INSEE databases to try and reproduce the socioeconomic characteristics of the Alès population. Orengo used a specialized platform for building agent simulations to create his own. “This platform allows researchers without computer programming training to create models, controlling various parameters that they define themselves,” explains the doctoral student. One of the limitations of this kind of simulation is computing power, which means only a certain number of variables can be taken into account. According to Orengo, his model still needs many improvements. These include “integrating individual vehicles, public transport, decision-making processes relating to risk management and more detailed reproduction of human behaviors”, he specifies. For Lancel, virtual reality could be an important addition, increasing participants’ immersion in the study, “By placing a participant in a virtual crowd, researchers could observe how they react to certain agents and their environment, which would allow them to refine their research,” she concludes.

Rémy Fauvel