Posts

IoT, Internet of Things

A standardized protocol to respond to the challenges of the IoT

The arrival of 5G has put the Internet of Things back in the spotlight, with the promise of an influx of connected objects in both the professional and private spheres. However, before witnessing the projected revolution, several obstacles remain. This is precisely what researchers at IMT Atlantique are working on, and they have already achieved results of global significance.

The Internet of Things (IoT) refers to the interconnection of various physical devices via the Internet for the purpose of sharing data. Sometimes referred to as the “Web 3.0”, this field is set to develop rapidly in the coming years, thanks to the arrival of new networks, such as 5G, and the proliferation of connected objects. Its applications are infinite: monitoring of health data, the connected home, autonomous cars, real-time and predictive maintenance on industrial devices, and more.

Although it is booming, the IoT still faces major challenges. “We need to respond to three main constraints: energy efficiency, interoperability and security,” explains Laurent Toutain, a researcher at IMT Atlantic. But there is one problem: these three aspects can be difficult to combine.

The three pillars of the IoT

First, energy is a key issue for the IoT. For most connected objects, the autonomy of a smartphone is not sufficient. In the future, a household may have several dozen such devices. If they each need to be recharged every two or three days, the user will have to devote several hours to this task. And what about factories that could be equipped with thousands of connected objects? In some cases, these are only of value if they have a long battery life. For example, a sensor could be used to monitor the presence of a fire extinguisher at its location and send an alert if it does not detect one. If you have to recharge its battery regularly, such an installation is no longer useful.

For a connected object, communication features account for the largest share of energy consumption. Thus, the development of IoT has been made possible by the implementation of networks, such as LoRa or Sigfox, allowing data to be sent while consuming little energy.

The second issue is interoperability, i.e. the ability of a product to work with other objects and systems, both current and future. Today, many manufacturers still rely on proprietary universes, which necessarily limits the functionalities offered by the IoT. Take the example of a user who has bought connected light bulbs from two different brands. They will not be able to control them via a single application.

Finally, the notion of security remains paramount within any connected system. This observation is all the more valid in the IoT, especially with applications involving the exchange of sensitive data, such as in the health sector. There are indeed many risks. An ill-intentioned user could intercept data during transmission, or send false information to connected objects, thus inducing wrong instructions, with potentially disastrous consequences.

Read more on I’MTech: The IoT needs dedicated security – now

On the Internet, methods are already in place to limit these threats. The most common is end-to-end data encryption. Its purpose is to make information unreadable while it is being transported, since the content can only be deciphered by the sender and receiver of the message.

Three contradictory requirements?

Unfortunately, each of the three characteristics can influence the others. For example, by multiplying the number of possible interlocutors, interoperability raises more security issues. But it also affects energy consumption. “Today, the Internet is a model of interoperability,” explains Laurent Toutain. For this, it is necessary to send a large amount of information each time, with a high degree of redundancy. It offers remarkable flexibility, but it also takes up a lot of space.” This is only a minor disadvantage for a broadband network, but not for the IoT, which is constrained in its energy consumption.

Similarly, if you want to have a secure system, there are two main possibilities. The first is to close it off from the rest of the ecosystem, in order to reduce risks, which radically limits interoperability.

The second is to implement security measures, such as end-to-end encryption, which results in more data being sent, and therefore increased energy consumption.

Reducing the amount of data sent, without compromising security

For about seven years, Laurent Toutain and his teams have been working to reconcile these different constraints, in the context of the IoT. “The idea is to build on what makes the current Internet so successful and adapt it to the constrained environments, says the researcher. We are therefore taking up the principles of the encryption methods and protocols used today, such as HTTP, but taking into account the specific requirements of the IoT”.

The research team has developed a compression mechanism named SCHC (Static Context Header Compression, pronounced “chic”). It aims to improve the efficiency of encryption solutions and provide interoperability in low-power networks.

For this purpose, SCHC works on the headers of the usual Internet protocols (IP, UDP and CoAP), which contain various details: source address, destination address, location of the data to be read, etc. The particularity of this method is that it takes advantage of the specificity of the IoT: a simple connected object, such as a sensor, has far fewer functions than a smartphone. It is then possible to anticipate the type of data sent. “We can thus free ourselves from the redundancy of classic exchanges on the web, says Laurent Toutain. We then lose flexibility, which could be inconvenient for standard Internet use, but not for a sensor, which is limited in its applications”.

In this way, the team at IMT Atlantique has achieved significant results. It has managed to reduce the size of the headers traditionally sent, weighing 70-80 bytes, to only 2 bytes, and to 10 bytes in their encrypted version. “A quantity that is perfectly acceptable for a connected object and compatible with network architectures that consume very little energy,” concludes the researcher.

A protocol approved by the IETF

But what about that precious interoperability? With this objective, the authors of the study approached the IETF (Internet Engineering Task Force), the international organization for Internet standards. The collaboration has paid off, as SCHC has been approved by the organization and now serves as the global standard for compression. This recognition is essential, but is only a first step towards effective interoperability. How can we now make sure that manufacturers really integrate the protocol into their connected objects? For this, Laurent Toutain has partnered with Alexander Pelov, also a researcher at IMT Atlantic, in order to found the start-up company Acklio. The company works directly with industrialists and offers them solutions to integrate SCHC in their products. It thus intends to accelerate the democratization of the protocol, an effort supported in particular by  €2 million in funds raised at the end of 2019.

Read more on I’MTech Acklio: linking connected objects to the Internet

Nevertheless, industrialists remain to be convinced that the use of a standard is also in their interest. To this end, Acklio also aims to position SCHC among the protocols used within 5G. To achieve this, it will have to prove itself with the 3GPP (3rd Generation Partnership Project) which brings together the world’s leading telecommunications standards bodies. “A much more constraining process than that of the IETF,” however, warns Laurent Toutain.

Bastien Contreras

AI

AI for interoperable and autonomous industrial systems

At Mines Saint-Étienne, researchers Olivier Boissier, Maxime Lefrançois and Antoine Zimmermann are using AI to tackle the issue of interoperability, which is essential to the industry of the future. The standardization of information in the form of knowledge graphs has allowed them to enable communication between machines that speak different languages. They then operate this system via a network of autonomous distributed agents on each machine to automate a production line.

Taking a train from France to Spain without interoperability means having to get off at the border since the rails are not the same in both countries. A train that hopes to cross over from one rail line to another is sure to derail. The same problem is posed on factory floors – which is why the interoperability of production lines is a key issue for the industry of the future. In an interoperable system, machines can communicate with one another in order to work together automatically, even if they don’t speak the same language. But this is not easy to implement. Factory floors are marked by a kind of cacophony of computer languages. And every machine has its own properties: a multitude of manufacturers, different applications, diverse ways of sending, measuring and collecting information etc. Such heterogeneity reduces the flexibility of production lines. During the Covid-19 crisis, for example, many companies had to reconfigure all of their machines by hand to set up new production operations, such as manufacturing masks. “As of now, on factory floors everything is coded according to an ideal world. Systems are incapable of adapting to change,” says Maxime Lefrançois, a specialist in web semantics. Interoperability also goes hand in hand with competition. Without it, ensuring that a factory runs smoothly would require investing in a single brand of equipment to be certain the various parts are compatible.  

There is no single method for making a system interoperable. Along with his colleagues at Mines Saint-Étienne, the researcher is addressing the issue of interoperability using an approach based on representing data about the machines (manufacturer, connection method, application, physical environment etc.) in a standardized way, meaning independent of the language inherent to a machine. This knowledge is then used by what is known as a multi-agent software system. The goal is to automate a production process based on the description of each machine.

Describing machines to automate decision-making

What does the automation of an industrial system imply? Service delegation, primarily. For example, allowing a machine to place an order for raw materials when it detects a low stock level, instead of going through a human operator. For this, the researchers are developing mechanisms for accessing and exchanging information between machines using the web of things. “On the web, we can set up a communication interface between the various devices via standardized protocols. These methods of interaction therefore reduce the heterogeneity of the language of connected devices,” explains Antoine Zimmermann, an expert in knowledge representation at Mines Saint-Étienne. All of the modeled data from the factory floor is therefore accessible to and understood by all the machines involved.

More importantly, these resources may then be used to allow the machines to cooperate with one another. To this end, the Mines Saint-Étienne team has opted for a flexible approach with local decision-making. In other words, an information system called an autonomous agent is deployed on each device and is able to interact with the agents on other machines. This results in a 4.0 word-of mouth system without loss of information. “An autonomous agent decides what to do based on what the machines upstream and downstream of its position are doing. This reasoning software layer allows the connected device to adjust its behavior according to current status of the system,” says Olivier Boissier, who specializes in autonomous agent systems at Mines Saint-Étienne. For example, a machine can stop a potentially dangerous process when it detects information indicating that a device’s temperature is too high. Likewise, it would no longer be necessary to redesign the entire system to add a component, since it is automatically detected by the other machines.

Read more on I’MTech: A dictionary for connected devices

Depending on the circumstances of the factory floor, a machine may also connect to different production lines to perform other tasks. “We no longer code a machine’s specific action, but the objective it must achieve. The actions are deduced by each agent using the data it collects. It therefore contributes to fulfilling a general mission,” adds the researcher. In this approach, no single agent can achieve this objective alone as each one has a range of action limited to its machine and possesses only part of the knowledge about the overall line. The key to success it therefore cooperation. This makes it possible to transition from producing cups to bottles, simply by changing the objective of the line, without reprogramming it from A to Z.

Towards industrial experiments

Last summer, the IT’m Factory technological platform, a simulated industrial space at Mines Saint-Étienne, hosted a case study for an interoperable and cooperative distributed system. This production line starts out with a first machine responsible for retrieving a cup in a storage area and placing it on a conveyor. A filling system then fills the cup with a liquid. When this second machine has run out of product to pour, it places a remote order with a supplier. At every step, several methods of cooperation are possible. The first is to send a message from one agent to another in order to notify it of the task it has just performed. A second method uses machine perception to detect the action performed by the previous machine. A certain method may be preferable depending on the objectives (production speed etc.).

The researchers have also shown that a robot in the middle of the line may be replaced by another. Interoperability made it possible for the line to adapt to hardware changes without impacting its production. This issue of flexibility is extremely important with a view towards integrating a new generation of nomadic robots. “In September 2020, we start the SIRAM industry of the future project, which should make it possible to deploy interoperable, adaptable information systems to control mobile robotic assistants,” says Maxime Lefrançois. In the future, these devices could be positioned at strategic locations in companies to assist humans or retrieve components at different parts of the production line. But to do so, they must be able to interact with the other machines on the factory floor.  

Anaïs Culot