mySMARTLife, Nantes

In Nantes, the smart city becomes a reality with mySMARTlife

Projets européens H2020Alongside European smart city champions like Barcelona, Copenhagen and Stockholm, France boasts a few gems of its own. One such city is Nantes, a participant in the European H2020 research project mySMARTlife since December 1st, 2016. Thanks to this project, the capital of the Pays de la Loire region plans to put its scientific heritage to good use, represented by IMT Atlantique, as it continues its transformation into a smart city.

 

When searching for proof that major French cities are truly transitioning to become smart cities, look no further than Nantes. For several years now, the city has been engaged in a transformational process, turning the concept of the city of the future into a reality. This is a role and ambition the city has taken to the European level, with Johanna Rolland, the Mayor of Nantes and President of Nantes Métropole, serving on the Executive Committee of Eurocities. This network of cities — also chaired by the Mayor of Nantes from 2014 to 2016 — advocates with European authorities for the interests of major metropolitan areas, and includes some big names among smart cities: Barcelona, Stockholm and Milan, etc. In short, at a time when few European cities can claim to be undertaking tangible measures towards becoming smart cities, Nantes can boast of being a pioneer in this area.

On December 1st, 2016, this characteristic was further enhanced with the official launch of the H2020 mySMARTlife research project. As proof of the position that Nantes holds in the European ecosystem of cities of the future, the city is now working alongside Hamburg and Helsinki as pilot cities for the project. At the local level in Nantes, MySmartLife is aimed at modernizing several of the city’s major areas of governance, particularly in terms of energy and transport. More specifically, one of the objectives is to “have a platform for Nantes Métropole, and its associated stakeholders,[1] to enable new services to be developed and monitored and to provide decision-support,” explains Bruno Lacarrière, researcher at IMT Atlantique. The institution is participating in this H2020 project, and offers dual expertise: in both energy efficiency related to heating networks and in offering decision-support. This expertise is provided by the Department of Energy Systems and Environment (member of the UMR CNRS 6144 GEPEA) for Nantes, and by the Department of Logics in Uses, Social Science and Management (member of the UMR CNRS 6285 LAB-STICC) for Brest.

 

Optimizing the city’s energy efficiency

The researchers from the IMT Atlantique Department of Energy Systems and Environment will specifically provide their knowledge in energy efficiency and system analysis, applied to heating networks. “Our skills in the field allow us to model these systems with an integrated approach that goes beyond thermal-hydraulic studies, for example,” explains Bruno Lacarrière. “We do not only model pipes, but an entire set of connected technological objects,” he continues. The researchers take into account the variety of systems that can provide heat sources for the network (boilers, cogeneration units, geothermal energy, recovering surplus industrial heat…), and the diversity of the consumers connected to the network. All of the heating network components are therefore integrated into the researchers’ models. This approach, which is complex because it is based on a comprehensive view of the network, makes it possible to better assess the areas for improvement in optimizing energy efficiency, and to better predict the consequences, for example, of renovating a building.

The researchers will greatly benefit from their proximity to the industrial partners in this project. To develop their models, they need field data such as heat output measurements from various points in the network. “This data is difficult to obtain, because in this case the system is connected to several hundred buildings,” Bruno Lacarrière points out. Furthermore, this information is not public. “Being able to work with stakeholders on the ground, such as Erena (Engie subsidiary and the network operator in Nantes), is therefore a real advantage for us, provided, of course, that the necessary confidentiality clauses are established,” the researcher adds.

 

No smart cities without decision support 

At the same time, the role of the Department of Logics in Uses, Social Science and Management is to develop decision-support tools, an important aspect in many of the smart city’s activities. This is true for mobility and transport, as Bruno Lacarrière points out: “In the context of the boom in electric vehicles, one application of decision-support is providing users with the nearest locations of available charging stations in real time.” Decision-support can also be used by public authorities to determine the best location for charging stations based on the configuration of the infrastructures and electrical distribution. “This is where having a platform becomes truly valuable: the information is centralized and made available to several stakeholders,” the researcher explains.

While the two types of expertise provided by IMT Atlantique are different in terms of research, they are very much complementary. Decision-support can, for example, use information obtained via the heating network models to propose new buildings to be connected to the network, or to study the deployment of new production sources. On the other hand, the results from decision-support based on several criteria (often related to various stakeholders) help to define new modeling scenarios for the networks. The researchers in energy efficiency and those in decision-support therefore complement each other through the platform, and provide support to the different stakeholders in the decisions they must make.

 

Ensuring the transformations are here to stay

While the mySMARTlife project will last five years, all the project’s actions — including rolling out the platform — must be completed within the first three years. The last two years will be dedicated to assessing the various actions, studying the impacts and making revisions if necessary. “For example, the first three years could be spent implementing an optimized energy management system, and the two follow-up years would provide feedback on the actual optimization. It is necessary to have sufficient hindsight, spanning several heating seasons,” explains Bruno Lacarrière.

The platform’s specific features must still be determined, and this will be the partners’ first mission. Because although it will initially be a demo platform, it is intended to remain after the project has ended. Therefore, planning must be done ahead of time to determine what form it will take, specifically so that industrial partners, as well as public authorities and final users, can make the most of it. Through this H2020 project, the European Commission is therefore planning to develop concrete actions that are made to last.

 

From a focus on Nantes to an international perspective

The work will initially focus on the Île de Nantes, located at the heart of the city on the Loire river. However, because certain heating and transportation networks are not confined to this area alone, the project will already be expanded to include other areas of the city. For example, the energy used by the Île de Nantes area is partially produced outside the district’s boundaries, therefore, the geographic area used for the models must be expanded. Several actions involving other zones in the metropolitan area are already planned.

Furthermore, the mySMARTlife project should not be seen solely as an effort to modernize a few areas of Nantes and the other two pilot cities. Brussels’ desire to ensure the sustainability of the actions over time is also related to its stated intention to ensure the scaling-up of the results from mySMARTlife. The key challenge is to produce knowledge and results that can be transferred to other urban areas, in France and abroad. This explains the advantage of entrusting the H2020 project management to Helsinki and Hamburg, in addition to Nantes.

By working together with the partners from these other two cities, the researchers will be able to validate their models by applying them to other major metropolitan areas. They will also attempt to test the validity of their work in smaller cities, since the project also includes the cities of Bydgoszcz (Poland), Rijeka (Croatia), Varna (Bulgaria) and Palencia (Spain). “The project is therefore aimed at demonstrating the implemented technology’s capacity to mass produce the actions used to develop a smart city,” the researcher points out. A key challenge in transforming cities is to make the transition to a smart city available not only to major metropolitan areas that are technologically advanced in this area, but also to smaller cities.

 

[1]­ At the local level in Nantes, Nantes Métropole will be supported by nine different partners: IMT Atlantique, Nantes Métropole Habitat, la Semitan, Armines, Atlanpole, Cerema, Engie and Enedis.

 

 

 

 

City4age, the elderly-friendly H2020 project

Projets européens H2020In the framework of the European research program H2020, the Institut Mines-Telecom is taking part in the project « City4age ». The latter is meant to offer a smart city model adapted to the elderly. Through non-intrusive technologies, the aim is to improve their quality of life and to facilitate the action of Health Services. The researcher and director of the IPAL[1], Mounir Mokhtari, contributes to the project in the test city of Singapor. Following here, is an interview given by the researcher to the Petitjournal.com, a french media for the French overseas.

 

Mounir Mokhtari, head of the IPAL

Mounir Mokhtari, Director of the IPAL

 

LePetitJournal.com : What are the research areas of and stakes involved in “City4age”?

Mounir Mokhtari : Today, in Europe as in Singapore, the population is ageing and the number of dependent elderly persons is rising sharply; even as the skilled labour force that can look after these people has decreased significantly. The management (of this issue) is often institutionalisation.  Our objective is to maintain the autonomy of this group of people at home and in the city, to improve their quality of life and that of their caregivers (family, friends etc.) by the integration of daily non-intrusive and easy-to-use technologies.

It involves the development of technological systems that motivate elderly persons in frail health to stay more active, to reinforce social ties and to prevent risks.  The objective is to install non-intrusive captors, information systems and communication devices in today’s homes, and to create simple user interfaces with everyday objects such as smartphones, TV screens, tablets, to assist dependent people in their daily living.

 

LPJ : What are the principal challenges in the research?

MM : The first challenge is to identify the normal behavior of the person, to know his / her habits, to be able to detect changes that may be related to a decline in cognitive or motor skills.  This involves the collection of extensive information available through connected objects and lifestyle habits, which we used to define a “user profile”.

Then the data obtained is interpreted and a service provided to the person.  Our objective is not to monitor people but to identify exact areas of interest (leisure, shopping, exercise) and to encourage the person to attend such activities to avoid isolation which could result in the deterioration of his / her quality of life or even health.

For this, we use the tools of decision and system learning, the Machine Learning or Semantic Web.  It’s the same principle, if you like, that Google uses to suggest appropriate search results (graph theory), with an additional difficulty in our case, related to the human factor.  It is all about making a subjective interpretation of behavioural data using machines that have a logical interpretation.  But it is also where the interest of this project lies, besides the strong societal issue.  We work with doctors, psychologists, ergonomists, physio and occupational therapists and social science specialists, etc.

 

LPJ : Can you give us a few simple examples of such an implementation ?

MM : To assist in the maintaining of social ties and activity levels, let’s take the example of an elderly person who has the habit of going to his / her Community Centre and of taking his / her meals at the hawker centre.   If the system detects that this person has reduced his / her outings outside of home, it will generate a prompt to the person to encourage him / her to get out of the home again, for example, “your friends are now at the hawker centre and they are going to eat, you should join them”.  The system can also simultaneously notify the friends on their mobiles that the person has not been out for a long time and to suggest that they visit him/ her for example.

Concerning the elderly who suffer cognitive impairment, we work on the key affected functions that are simple daily activities such as sleeping, hygiene, eating, and risks of falls.  For example, we install motion captors in rooms to detect possible falls.  We equip beds with optic fibre captors to manage the person’s breathing and heart rate to spot potential sleep problems, apnea or cardiac risks, without disturbing the person’s rest.

 

LPJ : An application in Singapore ?

MM : Our research is highly applied, with a strong industry focus and a view to a quick deployment to the end-user.  The solutions developed in the laboratory are proven in a showflat, then in clinical tests.  At the moment, we are carrying out tests at the Khoo Teck Puat hospital to validate our non-intrusive sleep management solutions.

Six pilot sites were chosen to validate in situ the deployment of City4age, including Singapore for testing the maintenance of social ties and activity levels of the elderly, via the Community Centres in HDB neighbourhoods.  The target is a group of around 20 people aged 70 and above, fragile and suffering from mild cognitive impairment, who are integrated in a community – more often in a Senior Activity Centre.  The test also involves the volunteers who help these elderly persons in their community.

 

LPJ : What is your background in Singapore?

MM : My research concentrated mainly on the area of technology that could be used to assist dependent people.  I came to Singapore for the first time in 2004 for the International Conference On Smart Homes and Health Telematics or ICOST which I organised.

I then discovered a scientific ecosystem that I was not aware of (at that period, the focus was turned towards the USA and some European cities).  I was pleasantly surprised by the dynamism, the infrastructure in place and the building of new structures at a frantic pace, and above all, by a country that is very active in the research area of new technologies.

I continued to exchange with Singapore since then and finally decided to join the laboratory IPAL, to which I am seconded by the “Institut Mines-Télécom” since 2009.  I took over the direction of IPAL in 2015 to develop this research.

 

LPJ : What is your view of the MERLION programme?

MM : The PHC MERLION is very relevant and attractive for the creation of new teams. There was an undeniable leverage of French diplomacy and MERLION in the launch of projects and in the consolidation of collaborations with our partners.

The programme brings a framework that creates opportunities and encourages exchanges between researchers and international conference participants and also contributes to the emergence of new collaborations.

Without the MERLION programme, for example, we would not have been able to create the symposium SINFRA (Singapore-French Symposium) in 2009, which has become a biennial event for the laboratory IPAL.  In addition, the theme of « Inclusive Smart Cities and Digital Health » was initiated into IPAL thanks to a MERLION project which was headed by Dr. Dong Jin Song who is today the co-director of IPAL for NUS.

Other than the diplomatic and financial support, the Embassy also participates in IPAL’s activities through making available one of its staff members on a part-time basis, who is integrated into the project team (at IPAL).

 

LPJ : Do you have any upcoming collaborations?

MM : We are planning a new collaboration between IPAL and the University of Bordeaux – which specialises in social sciences – for a behavioural study to help us in our current research.  We are thinking of applying for a new MERLION project in order to kickstart this new collaboration.  It is true that the Social Sciences aspect, despite its importance in the well-being of the elderly and their entourage, is not very well-developed in the laboratory. This PHC MERLION proposal may well have the same leverage as the previous one.

Beyond the European project City4Age, IPAL just signed a research collaboration agreement with PSA Peugeot—Citroën on mobility aspects in the city and well-being with a focus on the management of chronic diseases, such as diabetes and respiratory illnesses.  There is also an ongoing NRF (National Research Foundation) project with NUS (National University of Singapore), led by Dr. Nizar Quarti, a member of IPAL, on mobile and visual robotics.

Interview by Cécile Brosolo (www.lepetitjournal.com/singapour) and translation by Institut Français de Singapour, Ambassade de France à Singapour.

[1] IPAL : Image & Pervasive Access Lab – CNRS’s UMI based in Singapore.

Horizon 2020, Commission européenne

IMT to embark on two new H2020 projects on the IoT and 5G

Projets européens H2020At the end of May the European Commission announced the results of two joint calls (Europe/Japan and Europe/Korea) of the Horizon 2020 program dedicated to digital technology. Institut Mines-Télécom is taking part in two new projects in the areas of the Internet of Things (South Korea) and 5G (Japan) through the work of researchers at its Télécom SudParis and Eurecom graduate schools.

 

After working with Japan on the FP7 NECOMA project focusing on computer security, IMT is embarking on two new European projects with Asia. This makes IMT one of the leading players in collaborative research with Japan and South Korea in the strategic fields of digital technology for Europe”, explains Christian Roux, Director of Research and Innovation. “Developing scientific partnerships with Asia is a matter of great importance to us, as the high-level academic players there will provide crucial support in defining future standards in the areas of the Internet of Things and 5G on a global level.”

 

[box type=”shadow” align=”” class=”” width=””]Télécom SudParis, H2020, WiseIoTThe WiseIoT Project (South Korea) and Télécom SudParis

While work is being carried out to develop benchmark architectures in the Internet of Things, the Wie-IoT project brings together top European and Korean contributions to major activities for IoT standardization. Six European and Korean testbeds will be grouped together and applied to smart cities, leisure, and health in order to demonstrate the flexibility of the IoT’s global services. A substantial dissemination plan has been put in place for standardization in particular and will reach its culmination during the Winter Olympic and Paralympic Games in PyeongChang.

The consortium comprises prestigious research institutions, SMEs and a wide range of industries from Europe (EGM, IMT, NEC Europe, Telefonica, CEA, University of Cantabria, Liverpool John Moores University, Ayuntamiento de Santander, FHNW) as well as from Korea (Sejong University, KAIST, KNU, KETI, Sktelecom, Samsung, Axston, KT Corporation., GimpoBigData). The Wise-IoT environment will support SMEs and start-ups from these two regions in their efforts to penetrate the industrial sector of the IoT, by giving them access to a platform providing interoperability between heterogeneous data in smart environments.

Wise IoT is integrated in the IMT-run French-Korean laboratory ILLUMINE (http://illumine.wp.tem-tsp.eu/). Télécom SudParis will contribute its expertise in Social IoT and semantics and will manage an inclusive approach combining social networks and the IoT.[/box]

 

[box type=”shadow” align=”” class=”” width=””]Eurecom, Pagoda, H2020The 5G Pagoda Project (Japan) and Eurecom

The Pagoda project involves European partners such as Ericsson, the Aalto University in Finland, Eurecom, Orange Poland, the Fraunhofer Fokus along with two Swiss SMEs and Japanese partners:  Tokyo and Waseda universities, the operator KDDI, Hitachi and NEC.

The project’s goal is to create a virtual mobile network which can be deployed upon request, dedicated to an application (through idea of Network Slicing), during the Tokyo Olympic Games in 2020. To this end several technologies will be explored and used: Software Defined Networking (SDN), Network Function Virtualization (NFV) and Mobile Edge Computing (MEC).

Eurecom will contribute its expertise in network softwarization (SDN, NFV et MEC) and its Open Air Interface (OAI) tool to create solutions defined during the project on an open source 5G platform.[/box]

 

Octave : sécuriser la biométrie vocale contre l’usurpation

Octave: trustworthy and robust voice biometric authentication

Projets européens H2020Surely, voice biometric authentication would be an easier alternative to the large amount of passwords that we use daily. One of the barriers to exploitation involves robustness to spoofing and challenging acoustic scenarios. In order to improve the reliability of voice biometric authentication systems, Nicholas Evans and his team at Eurecom are involved since June 2015 — and for a two years duration — in a H2020 European project called Octave.

 

What is the purpose of the Objective Control of Talker Verification (Octave) project?

Nicholas Evans: The general idea behind this project is to get rid of the use of passwords. They are expensive in terms of maintenance: most people have many different passwords and often forget them. While simultaneously relieving end-users from the inconvenience of dealing with textual passwords, Octave will reduce the economic and practical burden of service providers related to password loss and recovery. Octave will deliver a scalable, trusted biometric authentication service — or TBAS. The project is about providing a reliable service that works in diverse, practical scenarios, including data-sensitive and mission-critical application.

 

Eurecom is leading the third work package of this H2020 European project. What is the role of the school?

NE: Our main mission is to ensure the reliability of the underlying automatic speaker verification technology. To do so, our work package has two objectives. First, insuring the proper functioning of the TBAS in a variety of environments. Indeed, the Octave platform should work properly whether it be deployed in a limited bandwidth and channel-variable telephony context or in a noisy physical access context. Eurecom’s focus is on our second objective, which is counter-spoofing.

 

How does your research team ensure the security of the system against spoofing?

NE: If I want to steal your identity, one strategy might be to learn a model of your voice and then to build a system to transform mine into yours. Anything like that would typically introduce a processing artefact. I could also try to synthetize your voice, but again this would produce processing artefacts. So, one of the highest level approaches to identify a spoofing attempt is to build an artefact detector. In order to do that, we apply pattern recognition and machine learning algorithms to learn the processing artefacts from huge databases of spoofed speech.

 

Portable telephone

 

So researchers have a large database of spoofed speech at their disposal?

NE: This is a very tricky issue. Ideally, we would use real data, that is to say real examples of spoofed speech. These don’t exist, however. Even if they did, they would most likely not contain many samples. Therefore, we have to generate these spoofed speech datasets ourselves. We try to imagine how an attacker would try to spoof a system and then we fabricate a large number of spoofed samples in the same way. Fortunately, we can do this much better than a spoofer might, for we can imagine many possibilities and many advanced spoofing algorithms.

However, this methodology results in an unfortunate bias: when we use artificially generated datasets of spoofed speech, then we are in a really good position to know how spoofers faked the voice, because… well, we were the spoofers. To design reliable spoofing detectors we must then try to use the databases blindly, that is to say we must try not to use our knowledge of the spoofing attacks – in the real world, we will never know how the spoofing attacks were generated.

Luckily a very large, standard database of spoofed speech is now available and this database was used recently for a competitive evaluation. Since participants were not told anything about some of the spoofing attacks used to generate this database, the results are the best indication so far of how reliably we might be able to detect spoofing in the wild. Eurecom co-organised this evaluation, ASVspoof 2015, with another Octave partner, the University of Eastern Finland, among others.

 

Who are the other partners working along Eurecom on the Octave project?

NE: Among our partners, we count Validsoft in the United Kingdom, a voice biometrics product vendor. Eurecom is working with Validsoft to validate Octave technologies in a commercial grade voice biometrics platform. This is not the only category of industrial partners that we work with. Whereas APLcomp are another of Octave’s product vendor partners, Advalia are custom solution developers. ATOS are Octave’s large-scale ICT integrators. Business users are represented by airport operator, SEA, whereas Findomestic, owned by BNP Paribas Personal Finance, represent the banking sector. These two partners, SEA and Findomestic, will help us with evaluation, by offering us the possibility to deploy the TBAS in their respective environments. Airports and banking ecosystems are really different, allowing us to ensure that Octave works in real, diverse conditions.

 

Learn more about the Octave project

 

[box type=”shadow” align=”aligncenter” class=”” width=”95%”]

Le+bleu

The Octave project:

The Objective Control of Talker Verification (Octave) project is a European project funded through the Horizon 2020 call on “Digital security: cybersecurity, privacy and trust”. It started in June 2015 and will last two years. The research program is segmented in eight work packages, among which the third, “Robustness in speaker verification”, is led by Eurecom. The school, part of the Institut Mines-Télécom, was contacted to work on Octave because of its experience on spoofing detection in voice biometric systems. Previous to Octave, Eurecom was involved in the FP7 project named Tabula Rasa.

List of Octave members:

carte partenaires Octave

[/box]