5G!Drones, 5G Drones

Putting drones to the 5G test

Projets européens H20205G!Drones, a European project bringing together industrialists, network operators and research centers, was launched in June 2019 for a three-year period. It should ultimately validate the use of 5G for delivery services by drone. Adlen Ksentini, a researcher at EURECOM, a key partner in the project, explains the challenges involved.

 

What was the context for developing the European 5G!Drones project?

Adlen Ksentini: The H2020 5G!Drones project is funded by the European Commission as part of phase 3 of the 5G PPP projects (5G Infrastructure Public Private Partnership). This phase aims to test  use cases for vertical industry applications (IoT, industry 4.0, autonomous cars etc.) on 5G test platforms. 5G!Drones focuses on use cases involving flying drones, or Unmanned Aerial Vehicles (UAV), such as for transport of packages, extension of network coverage with drones, public security etc.

What is the aim of this project?

AK: The aim is twofold. First, to test eight use cases for UAV services on 5G platforms located in Sophia Antipolis, Athens (Greece), Espoo and Oulu (Finland) to collect information that will allow us to validate the use of 5G for a wider roll-out of UAV services. And second, the project seeks to highlight the ways in which 5G must be improved to guarantee these services.

What technological and scientific challenges do you face?

AK: A number of obstacles will have to be overcome during the project: these obstacles are related to safeguarding drone flights . To fly drones, certain conditions are required. First, there has to be a reliable network with low latency, since remote control of the drones requires low latency in order to correct the flight path and monitor the drones’ position in real time. And there also has to be strong interaction between the U-Space service (see box) and the network operator to plan flights and check conditions: weather, availability of network coverage etc. In addition to these obstacles to be overcome, the 5G !Drones project will develop a software system that will be placed above the platforms, to automate the trials and display the results in real time.

[box type=”info” align=”” class=”” width=””]

The U-Space service is in charge of approving the flight plan submitted by drone operators. Its job is to check whether the flight plan is feasible, meaning ensuring that there are no other flights planned on the selected path and determining whether the weather conditions are favorable.

[/box]

How are EURECOM researchers contributing to this project?

AK: EURECOM is a key partner in the project. EURECOM will provide its 5G testing platform based on its OpenAirInterface (OAI) tool, which provides Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC) solutions. It will host two trials on public safety using flying drones, led by partners representing the vertical industry. In addition, EURECOM will be studying and proposing a solution for developing a 5G network dedicated to UAVs, based on the concept of network slicing.

Who are your partners and what collaborations are important for you?

AK: The project counts 20 partners, including network operators (Orange France and Poland, COSMOTE), specialists in the UAV field (Alerion, INVOLI, Hepta Airborne’s, Unmanned System Limited, CAFA Tech, INVOLI, Frequentis, DRONERADAR), industrial groups (NOKIA, Thalès and AIRBUS), a SME (INFOLYSIS) and research centers and universities (Oulu University, Aalto University, DEMOKRITOS, EURECOM), as well as the municipality of Egaleo in Greece. EURECOM is playing a central role in the project with UAV vertical industry partners by collaborating with all the members of the consortium and acting as a liaison between the UAV vertical industry partners, industrial groups and network operators.

What are the expected benefits of the project?

AK: In addition to the scientific benefits in terms of publications, the project will allow us to verify whether 5G networks are ready to deliver UAV services. Feedback will be provided to 3GPP standards organizations, as well as to the authorities that control the airspace for UAVs.

What are the next important steps for the project?

AK: After a first year in which the consortium focused on studying an architecture that would make it possible to establish a link between the vision of UAV industry stakeholders and 5G networks, as well as a detailed description of the use cases to be tested, the project will be starting its second year, which will focus on deploying the tests on the various sites and then begin the testing.

Learn more about the 5G!Drones project

Interview by Véronique Charlet for I’MTech

 

OligoArchive

DNA as the data storage medium

Projets européens H2020By 2025 the volume of data produced in the world will have reached 250 zettabytes (1 zettabyte = 1021 bytes). Current storage media have insufficient storage capacity or suffer from obsolescence. Preserving even a fraction of this data means finding a storage device with density and durability characteristics significantly superior to those of existing systems. The European OligoArchive project, launched in October 2019 for three years, proposes to use DNA (DeoxyriboNucleic Acid) as a storage medium. Raja Appuswamy, researcher at EURECOM partner of the project, explains further.

 

In what global context did the European OligoArchive project come about?

Raja Appuswamy Today, everything in our society is driven by data. If data is the oil that fuels the metaphorical AI vehicle, storage technologies are the cog that keep the wheel spinning. For decades, we wanted fast storage devices that can quickly deliver data, and optical, magnetic, and solid state storage technologies evolved to meet this requirement. As data-driven decision becomes a part of our society, we are increasingly faced with a new need–one for cheap, long-term storage devices that can safely store the collective knowledge we generate for hundreds or even thousands of years. Imagine you have a photograph that you would like to pass down to your great-great grand children. Where would you store it? How much space would it take? How much energy would it use? How much would it cost? Would your storage media still be readable two generations from now? This is the context for project OligoArchive.

What is at stake in this project?

RA Today, tape drives are the gold standard when it comes to data archival across all disciplines, from Hollywood movie archives to particle accelerator facilities. But tape media suffers from several fundamental limitations that makes it unsuitable for long-term data storage. First, the storage density of tape -the amount of data you can store per inch- is improving at a 30% rate annually; archival data, in contrast, that has a growth rate of 60%. Second, if one stores 1PB in 100 tape drives today, within five years, it would be possible to store the same data in just 25 drives. While this might sound like a good thing, using tape for archival storage implies constant data migration with each new generation of tape, and such migrations cost millions of dollars.

This problem is so acute that Hollywood movie archives have openly admitted that we are living in a dead period during which the productions of several independent artists will not be saved for the future! At the rate at which we are generating data for feeding our AI machinery, enterprises will soon be at this point. Thus, the storage industry as a whole has come to the realization that a radically new storage technology is required if we are to preserve data across generations.

What will be the advantages of the technology developed by OligoArchive?

RA Project OligoArchive undertakes the ambitious goal of retasking DNA–a biological building block–to function as a radically new digital storage media. DNA possesses three key properties that make it relevant for digital data storage. First, it is an extremely dense three-dimensional storage medium that has the theoretical ability to store 455 Exabytes in 1 gram. The sum total of all data generated world wide (global datasphere) is projected to be 175 Zettabytes by 2025. This could be stored in just under half a kilogram of DNA. Second, DNA can last several millenia as demonstrated by experiments that have the read DNA of ancient, extinct animal species from fossils that are dated back thousands of years. If we can bring back the wolly mammoth to life from its DNA, we can store data in DNA for millenia. Third, the density of DNA is fixed by nature, and we will always have the ability and the need to read DNA–everything from archeology to precision medicine depend on it. Thus, DNA is an immortal storage medium does not have the media obsolescence problem and hence, can never become out dated unlike other storage media (remember floppy disks?).

What expertise do EURECOM researchers bring?

The Data Science department at EURECOM is contributing to several aspects of this project. First, we are building on our deep expertise in storage systems to architect various aspects of using DNA as a storage media, like developing solutions for implementing a block abstraction over DNA, or providing random access to data stored in DNA. Second, we are combining our expertise in data management and machine learning to develop novel, structure-aware encoding and decoding algorithms that can reliably store and retrieve data in DNA, even though the underlying biological tasks of synthesis (writing) and sequencing (reading) introduce several errors.

Who are your partners and what are their respective contributions?

The consortium brings together a truly multi-disciplinary group of people with diverse expertise across Europe. Institute of Mollecular and Cellular Pharmacology (IPMC) in Sophia Antipolis, the home to the largest sequencing facility in the PACA region, is a partner that contributes its biological expertise to the project. Our partners at I3S, CNRS, are working on new compression techniques customized for DNA storage that will drastically reduce the amount of DNA needed to store digital content. Our colleagues at Imperial College London (UK) are building on our work and pushing the envelope further by using DNA not just a storage media, but a computational substrate by showing that some SQL database operations that run in-silico (on a CPU) today can be translated efficiently into in-vitro biochemical reactions directly on DNA. Finally, we also have HelixWorks, a startup from Ireland that specializes is investigating novel enzymatic synthesis techniques for reducing the cost of generating DNA, as an industrial partner.

What results are expected and ultimately what will be the applications?

The ambitious end goal of the project is to build a DNA disk–a fully working end-to-end prototype that shows that DNA can indeed function as a replacement for current archival storage technology like tape. Application wise, archival storage is a billion dollar industry, and we believe that DNA is a fundamentally disruptive technology that has the potential to reshape this market. But we believe that our project have an impact on areas beyond archival storage.

First, our work on DNA computation opens up an entirely new field of research on near-molecule data processing that mirrors the current trend of moving computation closer to data to avoid time-consuming data movement. Second, most of the models and tools we develop for DNA storage are actually applicable for analyzing genetic data in other contexts. For instance, the algorithm we are developing for reading data back from DNA provides a scalable solution for sequence clustering–a classic computational genomics problem with several applications. Thus, our work will also contribute to advances in computational genomics.

Learn more about OligoArchive

connected devices

A dictionary for connected devices

The field of connected devices is growing at a staggering pace across all industries. There is a growing need to develop a communication standard, meaning a ‘common language’ that different smart systems could understand and interpret. To contribute to this goal, ETSI (European Telecommunications Standards Institute) is funding a European project in which Mines Saint-Étienne researchers Maxime Lefrançois and Antoine Zimmermann[1] are taking part.

 

In order to work together, connected devices must be able to communicate with one another. This characteristic, known as ‘semantic interoperability,’ is one of the key challenges of the digital transition. To be effective, semantic interoperability must be based on the adoption of an agreed-upon set of best practices. This would culminate in the creation of a standard adopted by the IoT community. At the European level, ETSI (European Telecommunications Standards Institute) is in charge of setting standards for information and communication technologies. “For example, ETSI standardized the SIM card, which acts as an identifier in mobile phone networks to this day,” explains Maxime Lefrançois. He and his colleague Antoine Zimmermann are researchers at Mines Saint-Étienne and specialize in the semantic web and knowledge representation. They are taking part in the STF 578 project on the interoperability of connected devices funded by ETSI, in partnership two researchers from Universidad Politécnica de Madrid.

“Instead of proposing a standard that strictly defines the content of communications between connected devices, we define and formally identify the concepts involved, through what is known as an ontology,” says Antoine Zimmermann. This provides IoT players with greater flexibility since the content of messages exchanged may use the language and format best suited to the device, as long as an explicit link is made with the concept identified in the reference ontology. The two researchers are working on the SAREF reference ontology (Smart Applications Reference Ontology), a set of ETSI specifications which include a generic base and specializations for the various sectors related to the IoT: energy, environment, building, agriculture, smart cities, smart manufacturing, industry and manufacturing, water, automotive, e-health, wearables.

“The SAREF standard describes smart devices, their functions and the services they provide, as well as the various properties of the physical systems these devices can control,” explains Maxime Lefrançois. For example, a light bulb can say, “I can provide light” by using a concept defined by SAREF. A system or application may then refer to the same lighting concept to tell the object to turn on. “Ultimately, this knowledge should be described following the same standard models within each industry to facilitate harmonization between industries.” adds the researcher. The aim of the project is therefore to develop a public web portal for the standard SAREF ontology to facilitate its adoption by companies and collect their feedback and suggestions for improvement.

A specially-designed ‘dictionary’

“The SAREF public web portal is a little bit like a ‘dictionary’ for connected devices,” explains Maxime Lefrançois. “If we take the example of a water heater that can measure energy consumption and can be remotely-controlled, SAREF will describe its possible actions, the services it can provide, and how it can be used to lower energy costs or improve household comfort.” But his colleague Antoine Zimmermann explains, “It isn’t a dictionary in the traditional sense. SAREF specifies in particular the technical and IT-related constraints we may encounter when communicating with the water heater.”

Imagine if one day all water heaters and heat pumps were connected to the IoT and could be remotely controlled. They could then theoretically be used as an energy resource that could ensure the stability and energy efficiency of the country’s electricity grid. If, in addition, there was a uniform way to describe and communicate with these devices, companies in the smart building and energy sectors would waste less time individually integrating products made by different manufacturers. They could then focus instead on developing innovative services connected to their core business, giving them a competitive advantage. “The goal of semantic interoperability is to develop a service for a certain type of smart equipment, and then reuse this service for all similar types of equipment,” says Maxime Lefrançois. “That’s the heart of SAREF”.

Read more on I’MTech: How the SEAS project is redefining the energy market

At present, the existing standards are compartmentalized by sector. The energy industry has standards for describing and communicating with the electrical equipment of a water tower, but the water tower must then implement different standards to interface with other equipment in the water distribution network. “There are several different consortia for each sector,” explain the researchers, “but we now have to bridge the gap between these consortia, in order to harmonize their standards.” Thus the need for a ‘dictionary,’ a common vocabulary that can be used by connected devices in all industries.

Take the example of automotive manufacturers who are developing new batteries for electric vehicles. Such batteries could theoretically be used by energy suppliers to regulate the voltage and frequency of the electricity grid. “The automotive and energy industries are two sectors that had absolutely no need to communicate until now,” says Maxime Lefrançois, “in the future, they may have to work together to develop a common language, and SAREF could be the solution.”

A multilingual ‘dictionary’

The IoT community is currently engaged in something of a ‘standards war’ in which everyone is developing their own specification and hoping that it will become the standard. Impetus from public authorities is therefore needed to channel the existing initiatives  — SAREF at the European level. “We can well imagine that in the future, there will only be a single, shared vocabulary for everyone,” says Antoine Zimmermann. “But we may find ourselves with different vocabularies being developed at the same time, which then remain. That would be problematic. This is how it is today, for example, with electrical outlets. A machine intended to be used in the United States will not work with European outlets and vice versa.”

“The development of the SAREF public web portal is an important step since it encourages companies to take part in creating this dictionary,” adds Maxime Lefrançois. The more companies are involved in the project, the more comprehensive and competitive it will be. “The value of a standard is related to the size of the community that adopts it,” he says.

“The semantic web is particularly useful in this respect,” says Antoine Zimmermann, “it allows everyone to agree. Companies are all engaged in digital transformation and use the web as a common platform to get in touch with clients and partners. They use the same protocols. We think the semantic web is also a good way to build these common vocabularies that will work in various sectors. We aren’t looking for the right solution, but to demonstrate best practices and make them more widespread so that companies look beyond their own community.” 

A collaborative ‘dictionary’

The researchers’ work also involves developing a methodology for building this standard: a company must be able to suggest a new addition to the vocabulary that is highly specific to a certain field, while ensuring that this contribution aligns with the standard models and best practices that have been established for the entire ‘dictionary.’

“And that’s the tricky part,” says Maxime Lefrançois. How can the SAREF public portal be improved and updated to make sure that companies use it? “We know how to write ‘dictionaries’ but supporting companies is no simple task.” Because there are a number of constraints involved: all these different vocabularies and jargons must be assimilated, and companies may not necessarily be familiar with them.

“So we have to reinvent collaborative support methods for this dictionary. That’s where DevOps approaches implemented for software development are useful,” he says. These approaches make it possible to automatically check the suggestions based on a set of quality criteria, then automatically make a new version of the portal available online if the criteria are  fulfilled. “The goal is to shorten SAREF development cycles while maintaining an optimal level of quality,” concludes the researcher.

There are other hurdles to overcome to get the connected devices themselves to ‘speak SAREF,’ due to the specific limitations of connected devices –  limited storage and computing capacity, low battery life, limited bandwidth, intermittent connectivity. The use of ontologies for communication and ‘reasoning’ was first thought up without these constraints, and must be reinvented for these types of ‘edge computing’ configurations. These issues will be explored in the upcoming ANR CoSWoT project (Constrained Semantic Web of Things) which will include researchers from LIRIS, Mines Saint-Étienne, INRAE (merger of INRA and IRSTEA), Université Jean-Monnet and the company Mondeca.

 

[1] Maxime Lefrançois and Antoine Zimmermann are researchers at the Laboratory Hubert Curien, a joint research unit between CNRS/Mines Saint-Étienne/Université Jean Monnet.

SOCCRATES

SOCCRATES automates cybersecurity for industrial systems

Projets européens H2020SOCCRATES is a H2020 European project launched in September 2019 for a three-year period. It aims to develop at least one platform to automate the detection of certain attacks and launch appropriate countermeasures. In doing so, it should help cyber security operators for industrial systems act more quickly and effectively in the event of a cyber attack. Hervé Debar, an information systems security researcher at Télécom SudParis, explains how the research consortium, which includes the school, is going about developing this solution.  

 

What is the SOCCRATES platform?

Hervé Debar: The SOCCRATES platform is a “Security Information and Event Management” environment that aims to detect and block cyber-attacks more effectively. To do so, the platform collects data about the vulnerabilities present on the monitored system, malicious activity targeting the IT environment, and general information about the threat. It then proposes appropriate countermeasures for the attacks that are detected and makes it possible to implement them.

How does it hope to address the needs of companies and organizations?

HD: SIEM platforms are the core of Security Operating Centers (SOC), where operators  manage cyber threats. All operators of critical infrastructures must monitor their information systems as required by French and European regulations. Faced with growing threats, the SOCCRATES platform aims to provide a greater degree of automation, making it possible to respond to attacks more quickly and precisely. Operators could then focus on the most complex attacks.

What is your approach to developing this platform?

HD: The project focuses primarily on the knowledge with which SOC operators are provided in order to respond to attacks. This knowledge takes one of three forms. The first is increased knowledge of the monitored information system, and of the potential attack paths that could be used to compromise a vulnerable target. Blocking the easiest attack paths can help prevent a hacker from spreading throughout the system. The second form of knowledge is based on an understanding of the threat. This means observing internet attack phenomena in order to improve the detection mechanisms used. And the third form of knowledge involves understanding the impact an attack has on operations in order to assess the risks of countermeasures and the benefits in terms of limiting the impact of an attack.

What expertise are Télécom SudParis researchers contributing to this project?

HD: We’re contributing our expertise in cyber attack remediation, which we developed in particular through the MASSIF and PANOPTESEC European FP7 projects. Our work on these two projects, which were launched in 2013 and 2014, gave us the opportunity to develop in-depth knowledge about industrial cybersecurity, managing attacks and implementing countermeasures. Our response model provides a quantitative assessment of the impact — whether positive or negative — of the remediations proposed to block attacks.

Read more on I’MTech: SPARTA: Defining Cybersecurity in Europe

How do you plan to test the effectiveness of the SOCCRATES platform?

HD: The platform will be implemented and deployed in two pilot environments involving critical infrastructures. In the field of cloud computing, with the company Mnemonic, and in the energy sector with Vattenfall. Mnemonic is a managed security service provider. At Vattenfall, the SOCCRATES platform will be used to monitor networks that control electricity production and distribution.

Beyond these industry partners, how is the project organized?

HD: SOCCRATES is coordinated by the Netherlands Organisation for Applied Scientific Research (TNO). In addition to IMT, three are three Swedish partners (KTH, Foreseeti and Mnemonic), a Finnish partner (F-Secure), ATOS Spain, Vattenfall IT Services (Poland), the Austrian Institute of Technology (AIT), and another Dutch partner, ShadowServer. This consortium is divided into three kinds of contributions: vulnerability analysis, behavioral detection, and attack remediation. Our first major step is to define the use cases and demonstration scenarios that we will use to develop, approve and demonstrate the components of the project. We plan to do this by the end of January.

Learn more about SOCCRATES

MADEin4

MADEin4: digital twinning and predictive maintenance for industry

Projets européens H2020The European MADEin4 project was launched in April 2019 for a three-year period. It aims to help semiconductor manufacturers and equipment suppliers play an active role in the continuous improvement of their equipment. How? By relying on new digital twinning and predictive maintenance technologies. Agnès Roussy and Valéria Borodin, research professors at Mines Saint-Étienne, a member of the MADEin4 project, explain the context that gave rise to this project and discuss the scientific hurdles to overcome.   

 

What was the context for developing the MADEin4 project?

Agnès Roussy: The MADEin4 project (Metrology Advances for Digitized ECS Industry 4.0) is an ECSEL project (Electronic Components and Systems for European Leadership). Its aim is to support and bring together the semiconductor industry in Europe in the transition to digital technology.

What is the overall goal of this project?

Valéria Borodin: To increase production output without affecting reliability levels in the manufacturing of electronic devices, the quality of which must comply with the increasingly demanding requirements of the highly competitive semiconductors market.

And how are you going about this?

AR: In order to improve productivity and facilitate the integration of digital technology into the organization of manufacturing processes for semiconductor and equipment manufacturers, going beyond the state of the art, the project will rely on an Industry 4.0 approach. To do so, two complementary boosters will be leveraged in the development of a pilot line: a physical accelerator based on next-generation metrology and inspection equipment for the microelectronics industry; and a digital accelerator – the digital twin (see box) – integrating artificial intelligence technology to improve output and equipment performance prediction.

[box type=”shadow” align=”” class=”” width=””]

Plus, loupeThe technique of digital twinning is used by manufacturers to monitor the operational status of their equipment (manufacturing, metrology, inspection). Digital twins of physical equipment are used. They evolve over time using data collected by sensors to measure the health status of equipment in order to prevent or anticipate breakdowns.[/box]

What technological and scientific challenges do you face?

VB: The development of digital twins and simulation models for managing and coordinating a production unit at different levels of decision-making poses a number of challenges, in particular, in terms of consistency of digital technology and decision-making across all industrial activities. In this regard, the help and expertise of semiconductor manufacturers and equipment suppliers (manufacturing and metrology) play a pivotal role in confirming the usefulness and industrial feasibility of the solutions we propose as academics.

How are Mines Saint-Étienne researchers contributing to the project?

AR: One of the research areas, in which Mines Saint Étienne’s Manufacturing and Logistics Sciences department (SFL) is primarily active, focuses on microelectronic manufacturing. This involves advanced process control, quantitative management of operations in the manufacturing process, and decision support at different levels (operational, tactical and strategic). As part of the MADEin4 project, we seek to explore opportunities and identify the limitations of new digital technologies in the intensive use and analysis of the massive quantities of data collected by inspection and metrology equipment.

Who are you partners for this project, and which collaborations are important for your work?

VB: The MADEin4 project brings together the expertise of 42 industrial and academic partners from 11 countries. Our key industrial partners for this project are STMicroelectronics in Rousset and Crolles. This project, among others, allows us to continue the long-standing, successful academic collaboration between the Manufacturing and Logistics Sciences Department at Mines Saint Etienne’s Provence Microelectronics Center (CMP) and the ST sites of Rousset and Crolles, who we’ve worked with for over 15 years. Many equipment suppliers are also involved in this project, so we’ll have the opportunity to work with them more closely on the equipment. And likewise for the academic partners involved: this European project will help foster new opportunities for collaboration through PhD theses or future calls for projects.

What are the expected benefits?

AR: The expected benefits of the MADEin4 project closely reflect the scientific and strategic priorities of Mines Saint-Etienne and the Provence Microelectronics Center (CMP), which promote a number of important topics: the industry of the future (Industry 4.0) and artificial intelligence (IA). Through the MADEin4 project, we seek to provide process control solutions for semiconductor manufacturers, explore opportunities for applications of digital twinning technology, strengthen the partnership with semiconductor manufacturers, and increase international recognition for the CMP on topics related to microelectronic manufacturing.

What are the important steps coming up for the project?

VB: The MADEin4 project started just over six months ago. This initial phase is exciting because everything seems to be possible. As for Mines Saint Étienne, the industrial data soon to be provided by the different partners will allow us to compare our research to the realities of industry. By the end of the first year, the research findings will be publicized through articles in international journals and presentations to the scientific communities involved.

Find out more about the MADEin4 project

robots

Robots on their best behavior in the factory of the future

A shorter version of this article was published in the monthly magazine Acteurs du franco-allemand, as part of an editorial partnership.

[divider style=”normal” top=”20″ bottom=”20″]

Robots must learn to communicate better if they want to earn their spot in the factory of the future. This will be a necessary step in ensuring the autonomy and flexibility of production systems. This issue is the focus of the German-French Academy for the Industry of the Future’s SCHEIF project. More specifically, researchers must choose appropriate forms of communication technology and determine how to best organize the transmission of information in a complex environment.

 

The industry system is monolithic for robots. They are static, and specialized for a single task, but it is impossible for us to change their specialization based on the environment.” This observation was the starting point for the SCHEIF[1] project. SCHEIF, conducted in the framework of the German-French Academy for the Industry of the Future, seeks to allow robots to adapt more easily to function changes. To achieve this, the project brings together researchers from EURECOM, the Technical University of Munich (TUM) and IMT Atlantique. The researchers’ goal is “to create a ‘plug and play’ robot that can be deployed anywhere, easily understand its environment, and quickly interact with humans and other robots,” explains Jérôme Härri, a communications researcher with EURECOM participating in this project.

The robots’ communication capacities are particularly critical in achieving this goal. In order to adapt, they must be able to effectively obtain information.  The machines must also be able to communicate their actions to other agents—both humans and robots—in order to integrate into their environment without disruption. Without these aspects, there can be no coordination and therefore no flexibility.

This is precisely one of the major challenges of the SCHEIF project, since the industrial environment imposes numerous constraints on machine communications. They must be fast in the event of an emergency, and flexible enough to prioritize information based on its importance for production chain safety and effectiveness. They must also be reliable, given the sensitivity of the information transmitted. The machines must also be able to communicate over the distances of large factories, not just a few meters. They must combine speed, transmission range, adaptability and security.

Solving the technology puzzle

The solution cannot be found in a single technology,” Jérôme Härri emphasizes. Sensor technology, for example, like Sigfox and LoRa, which are dedicated to connected objects, have high reliability and a long range, but cannot directly communicate with each other. “There must be a supervisor in charge of the interface, but if it breaks down, it becomes problematic, and this affects the robustness criterion for the communications,” the researcher adds. “Furthermore, this data generally returns to the operator of the network base stations, and the industrialist must subscribe to a service in order to obtain it.

On the other hand, 4G provides the reliability and range, but not necessarily the speed and adaptability needed for the industry of the future. As for 5G, it provides the required speed and offers the possibility of proprietary systems. This would free industrialists from the need to go through an operator. However, its reliability in an industrial context is still under specification.

Faced with this puzzle, two main approaches emerge. The first is based on increasing the interoperability and speed of sensor technology. The second is based on expanding 5G to meet industrial needs, particularly by providing it with features similar to those of sensor technologies.  The researchers chose this second option. “We are improving 5G protocols by examining how to allocate the network’s resources in order to increase reliability and flexibility,” says Jérôme Härri.

To achieve this, the teams of French and German researchers can draw on extensive experience in vehicular communication, which uses 4G and 5G networks to solve transport and mobility issues. The cellular technology used for vehicles has the advantage of featuring a cooperative scheduling specification. This information system feature decides who should communicate a message and at what time. A cooperative scheduler is essential for fleets of vehicles on a highway, just like fleets of robots used in a factory. It ensures that all robots follow the same rules of priority. For example, thanks to the scheduler, information that is urgent for one robot is also urgent for the others, and all the machines can react to free the network from traffic and prioritize this information. “One of our current tasks is to develop a cooperative scheduler for 5G adapted to robots in an industrial context,” explains Jérôme Härri.

Deep learning for added flexibility

Although the machines can rely on a scheduler to know when to communicate, they still must know which rules to follow. The goal of the scheduler is to bring order to the network, to prevent network saturation, for example, and collisions between data packets. However, it cannot determine whether or not to authorize a communication solely by taking communication channel load into account. This approach would mean blindly communicating information: a message would be sent when space is available, without any knowledge of what the other robots will do. Yet in critical networks, the goal is to plan for the medium term in order to guarantee reliability and reaction times. When robots move, the environment changes. It must therefore be possible to predict whether all the robots will start suddenly communicating in a few seconds, or if there will be very few messages.

Deep learning is the tool of choice for teaching networks and machines how to anticipate these types of circumstances. “We let them learn how several moving objects communicate by using mobility datasets. They will then be able to recognize similar situations in their actual use and will know the consequences that can arise in terms of channel quality, or number of messages sent,” the researcher explains. “It is sometimes difficult to ensure learning datasets will match the actual situations the network will face in the future. We must therefore add additional learning on the fly during use. Each decision taken is analyzed. System decisions therefore improve over time.

The initial results on this use of deep learning to optimize the network have been published by the teams from EURECOM and Technical University of Munich. The researchers have succeeded in organizing communication between autonomous mobile agents in order to prevent the collision of the transmitted data packets. “More importantly, we were able to accomplish this without each robot being notified of whether the others would communicate,” Jérôme Härri adds. “We succeeded in allowing one agent to anticipate when the others will communicate based solely on behavior that preceded communication in the past.

The researchers intend to pursue their efforts by increasing the complexity of their experiments to make them more like actual situations that occur in industrial contexts. The more agents, the more the behavior becomes erratic and difficult to predict. The challenge is therefore to enable cooperative learning. This would be a further step towards fully autonomous industrial environments.

[1] SCHEIF is an acronym for Smart Cyber-physical Environments for Industry of the Future.

 

CloudButton

CloudButton: Big Data in one click

Projets européens H2020Launched in January 2019 for a three-year period, the European H2020 project CloudButton seeks to democratize Big Data by drastically simplifying its programming model. To achieve this, the project relies on a new cloud service that frees the final customer from having to physically manage servers. Pierre Sutra, researcher at Télécom SudParis, one the CloudButton partner, shares his perspective on the project.

 

What is the purpose of the project?

Pierre Sutra: Modern computer architectures are massively distributed across machines and a single click can require the computations from tens to hundreds of servers. However, it is very difficult to build this type of system, since it requires linking together many heterogeneous components. The key objective of CloudButton is to radically simplify this approach to programming.

How do you intend to do this? 

PS: To accomplish this feat, the project builds on a recent concept that will profoundly change computer architectures: Function-as-a-Service (FaaS). FaaS makes it possible to invoke a function in the cloud on-demand, as if it was a local computation. Since it uses the cloud, a huge number of functions can be invoked concurrently, and only the usage is charged—with millisecond precision. It is a little like having your own supercomputer on demand.

Where did the idea for the CloudButton project come from?

PS: The idea came from a discussion with colleagues from the Spanish university Rovira i Virgili (URV) during the 2017 ICDCS in Atlanta (International Conference on Distributed Computing Systems). We had just presented a new storage layer for programming distributed systems. This layer was attractive, yet it lacked an application that would make it a true technological novelty. At the time, the University of Berkeley offered an approach for writing parallel applications on top of FaaS. We agreed that this was what we needed to move forward. It would allow us to use our storage system with the ultimate goal of moving single-computer applications to the cloud with minimal effort. The button metaphor illustrates this concept.

Who are your partners in this project?

PS: The consortium brings together five academic partners: URV (Tarragona, Spain), Imperial College (London, UK), EMBL (European Molecular Biology Laboratory, Heidelberg, Germany), The Pirbright Institute (Surrey, UK) and IMT, and several industrial partners, including IBM and RedHat. The institutes specializing in genomics (The Pirbright Institute) and molecular biology (EMBL) will be the end users of the software. They also provide us with new use cases and issues.

Can you give us an example of a use case?

PS: EMBL offers its associate researchers access to a large bank of images from around the world. These images are stamped with information on the subject’s chemical composition by combining artificial intelligence and the expertise of EMBL researchers. For now, the system must calculate the stamps in advance. A use case for CloudButton would be for these computations to be performed on-demand, to customize user requests, for example.

How are Télécom SudParis researchers contributing to this project?

PS: Télécom SudParis is working on the storage layer for CloudButton. The goal is to design programming abstractions that are as similar as possible to what standard programming languages are. Of course, these abstractions must also be effective for the FaaS delivery model. This research is being conducted in collaboration with IBM and RedHat.

What technological and scientific challenges are you facing?

PS: In its current state, storage systems are not designed to handle massively parallel computations over a short period of time. The first challenge is therefore to adapt storage to the FaaS model. The second challenge is to reduce the synchronization between parallel tasks to a strict minimum in order to maximize performance. The third challenge is fault tolerance. Since the computations run on large-scale infrastructure, this infrastructure is regularly subject to errors. However, the faults must be hidden in order to display a simplified programming interface.

What are the expected benefits of this project?

PS: The success of a project like CloudButton can take several forms. Our first goal is to allow the institutes and companies involved in the project to resolve their computing and big data issues. On the other hand, the software we are developing could also meet with success among the open source community. Finally, we hope that this project will produce new design principles for computer system architectures that will be useful in the long run.

What are the important next steps in this project?

PS: We will meet with the European Commission one year from now for a mid-term assessment. So far, the prototypes and applications we have developed are encouraging. By then, I hope we will be able to present an ambitious computing platform based on an innovative use case.

 

[divider style=”normal” top=”20″ bottom=”20″]

The CloudButton consortium partners

Polybioskin

Polybioskin, natural skin through more ethical products

Projets européens H2020Skin contact products, whether for medical, sanitary or cosmetic purposes, have two major drawbacks: they are neither recyclable nor biodegradable. The Polybioskin H2020 project aims to correct these aspects which are out of step with consumers’ growing environmental awareness and concerns. Launched two years ago, the Polybioskin project brings together 12 European partners, including IMT Mines Alès, and will come to a close in May 2020. José-Marie Lopez-Cuesta, a materials researcher at IMT Mines Alès, presents the challenges involved in this project.

 

Could you describe the context of the Polybioskin project?

José-Marie Lopez-Cuesta: Skin is the human body’s most important organ and our first line of defense against external agents. Cosmetics, along with skin care and biomedical products, are developed to allow for direct contact with the skin or to protect it. These products represent a significant market which includes both low-cost and high-performance products. Today, most of these products are obtained from polymers based on fossil-fuel resources which are neither recyclable nor biodegradable.

So what is the aim of this project?

JMLC: Polybioskin must enable the industrial development of bio-based, renewable solutions for antimicrobial, antioxidant and absorbent applications for skin contact products. The three target markets are sanitary, cosmetic and biomedical products.

What scientific problems must you respond to?

JMLC: The products developed must be economically competitive and have a renewable content of 90%. We also strive to reduce the environmental footprint, through different end-of-life scenarios for the products developed. Life-cycle analyses must demonstrate their sustainable character and their compliance with safety regulations.

Who are your partners for this project and how is their collaboration important to your work?  

JMLC: The Polybioskin consortium combines the expertise of 12 partners from 7 European countries. We already have relationships with several of the academic partners through the ENMAT research network (European Network on Materials). And there are also non-academic partners who play an important role. The industry partners included in the BBI association are stakeholders in the definition of calls for projects aiming to promote bioplastics. This project can also help launch new collaborations as part of PhD theses and prepare responses to new calls for H2020 projects.

Polybioskin draws on expertise in biology, chemistry, material sciences, nanotechnologies and other fields. How have researchers from IMT Mines Alès contributed to the project?

JMLC: IMT Mines Alès develops superabsorbent structures for diapers and polymer films based on alloys formulated for beauty mask applications. The goal is to develop these structures using only bio-based components through chemical modifications and plastics processes. Different sources of cellulose have been used to synthesize absorbent structures. IMT Mines Alès also contributes to analyzing the life-cycle of all the components developed over the course of the project. To do so, we use specific tools including databases on the energy consumption and impact of the different components.

What are the current and future steps for Polybioskin ?

JMLC: The project is two-thirds complete. We’re currently in the pilot phases in order to develop prototypes. These prototypes are developed by assembling the materials developed in the earlier stages of the project. Publications and scientific papers have already been produced. In addition, a consortium agreement has been signed with the industry partners involved in the project. This will help us manage the technology transfer of the results at the end of the project, so that our scientific results can directly contribute to bringing innovative products to the market.

[divider style=”solid” top=”20″ bottom=”20″]

Polybioskin project partners

[divider style=”solid” top=”20″ bottom=”20″]

 

 

Civiq

CiViQ: working towards implementing quantum communications on our networks

Projets européens H2020End 2018, the CiViQ H2020 European project was launched for a period of three years. The project aims to integrate quantum communication technologies into traditional telecommunication networks. This scientific challenge calls upon Télécom Paris’ dual expertise in both quantum cryptography and optical telecommunication, and will provide more security for communications. Romain Alléaume, a researcher in quantum information, is a member of CiViQ. He explained to us the challenges and context of the project.

 

What is the main objective of the CiViQ project?

Romain Alléaume: The main objective of the project is to make quantum communications technologies and, in particular, consistent quantum communications, much better adapted for use on a fiber-optic communications system. To do this, we want to improve the integration, miniaturization, and interoperability of these quantum communication technologies.

Why do you want to integrate quantum communications into telecommunication networks?

RA: Quantum communications are particularly resistant to interception because they are typically based on the exchange of light pulses containing very few photons.  On such a minuscule scale, any attempt to eavesdrop on the communications and therefore measure them will come up against the fundamental principles of quantum physics. These principles guarantee that the system will disrupt communications sufficiently for the spy to be detected.

Based on this idea, it is possible to develop protocols called Quantum Key Distribution, or QKD. These protocols allow a secret encryption key to be shared with the help of quantum communication.  Unlike in mathematical cryptography, a key exchange through QKD cannot be recorded and therefore cannot be deciphered later on. Thus, QKD offers what is called “everlasting security”. This means that the security will last no matter what the calculating power of the potential attacker.

What will this project mean for the implementation of quantum communications in Europe?

RA: The European Community has launched a large program dedicated to quantum technologies which will run for 10years, called the Quantum Technology Flagship. The aim of the flagship is to accelerate technological development and convert research in these fields into technological innovation.  The CiViQ project is one of the projects chosen for the first stage of this program.  For the first time in a quantum communications project, several telecommunications operators are also taking part: Orange, Deutsche Telekom and Telefonica. So it is an extensive project in the technological development of coherent quantum communications, with research ranging from cointegration with classic forms of communication, to photonic integration. Although CiViQ has to allow the implementation of quantum cryptography on a very large scale, it must also outline the prospects for a universal use of communications. This reinforces security of critical infrastructures by relying on the networks’ physical layer.

What are the technological and scientific challenges which you face?

RA: One of the biggest challenges we face is merging classical optical communications and quantum communications.  In particular, we must work on implementing them jointly on the same optical fiber, using similar, if not identical, equipment.  To do that, we are calling on Télécom ParisTech’s diverse expertise.  I am working with Cédric Ware and Yves Jaouen, specialists in optical telecommunications.   The collaboration allows us to combine our expertise in quantum cryptography and optic networks.  We use a state-of-the-art experimental platform to study classical-quantum conversion in optic communications.

More broadly, how does the project reflect the work of other European projects that you are carrying out in quantum communications?

RA: As well as CiViQ, we are taking part in the OpenQKD project. This is also part of the Quantum Technology Flagship.  The project involves pilot implementations of QKD, with the prospect of Europe developing a quantum communications infrastructure within 10 to 15 years’ time. I am also part of a standardization activity in quantum cryptography, working with the ETSI QKS-Industry Standardization Group. With them, I mainly work on issues such as the cryptographic assessment and certification of QKD technology.

How long have you been involved in developing these technologies?

RA: Télécom Paris has been involved in European research in quantum cryptography and communications for 15 years. In particular, this was through implementing the first European network as part of the SECOQC project, which ran from 2004-2018. We have also taken part in the FP7 Q-CERT project, which focuses on the security of implementing quantum cryptography. More recently, the school has partnered with the Q-CALL H2020 project which focuses on the industrial development of quantum communications. As well as this, the project is working on a possible “quantum internet” in the future. This relies on using quantum communications from start to finish, which is made possible by the increase in the reliability of quantum memories.

In parallel, my colleagues who specialize in optic telecommunications have been developing world-class expertise in coherent optical communications for around a decade.  With this type of communications, CiViQ aims to integrate quantum communications, by relying on the fact that the two techniques are based on the same common signal processing techniques.

What will be the outcomes of the CiViQ project?

RA: We predict that there will be key contributions made to experimental laboratory demonstration of the convergence of quantum and classical communications, with a level of integration that has not yet been achieved.  A collaboration with Orange is also planned, which will involve issues regarding wavelength-division multiplexing. The technology will then be demonstrated between the future Télécom Paris site in Palaiseau, and Orange Labs in Châtillon.

Finally, we predict theoretical contributions to new quantum cryptography protocols, techniques involving proofs of security and the certification of QKD technology, which will have an impact on standardization.

An example of the micro-structures produced using a single-beam laser nano printer by the company Multi-Photon Optics, a member of the consortium.

Nano 3D Printers for Industry

Projets européens H2020The 3-year H2020 project PHENOmenon, launched in January 2018, is developing nano 3D printers capable of producing micro and nano-structures (particularly those with an optical function), while adhering to limited production times. Kevin Heggarty is a researcher at IMT Atlantique, one of the project partners along with three other European research institutes and eight industrial partners, including major groups and SMEs. He offers a closer look at this project and the scientific challenges involved.

 

What is the goal of the H2020 PHENOmenon project?

Kevin Heggarty: The goal of this project is to develop nano 3D printers for producing large, high-resolution objects. The term “large” is relative, since here we are referring to objects that only measure a few square millimeters or centimeters with nanometric resolution—one nanometer measures one millionth of a millimeter. We want to be able to produce these objects within time frames compatible with industry requirements.

What are the scientific obstacles you must overcome?

KH: Currently there are nano 3D printers that work with a single laser beam. The manufacturing times are very long. The idea with PHENOmenon is first to project hundreds of laser beams at the same time. We are currently able to simultaneously project over one thousand. The long-term goal is to project millions of laser beams to significantly improve production speeds.

What inspired the idea for this project?

KH: Parallel photoplotting is an area of expertise that has been developed in IMT Atlantique laboratories for over 15 years. This involves using light beams to trace patterns on photosensitive materials, like photographic film. Up until now, this was done using flat surfaces. The chemistry laboratory of ENS Lyon has developed highly sensitive material used to produce 3D objects. It was in our collaboration with this laboratory that we decided to test an idea—that of combining parallel photoplotting with the technology from ENS Lyon to create a new manufacturing process.

After demonstrating that it was possible to obtain hundreds of cubic microns by simultaneously projecting a large number of laser beams on highly sensitive material, we reached out to AIMEN, an innovation and technology center specialized in advanced manufacturing materials and technologies located in Vigo, Spain. Their cutting-edge equipment for laser machining is well-suited to the rapid manufacturing of large objects. With its solid experience in applying for and leading European projects, AIMEN became the coordinator of PHENOmenon. The other partners are industrial stakeholders, the end users of the technology being developed in the context of this project.

What expectations do the industrial partners have?

KH: Here are a few examples: The Fábrica Nacional de Moneda y Timbre, a public Spanish company, is interested in manufacturing security holograms on bank notes. Thalès would like to cover the photovoltaic panels it markets with micro and nano-structured surfaces produced using nano-printers. The PSA Group wants to equip the passenger compartment of its vehicles with holographic buttons. Design LED will introduce these micro-structured 3D components in its lighting device, a plastic film used to control light…

What are the next steps in this project?

KH: The project partners meet twice a year. IMT Atlantique will host one of these meetings on its Brest campus in the summer of 2020. In terms of new developments in research, the chemistry laboratory of ENS Lyon is preparing a new type of resin. At IMT Atlantique, we are continuing our work. We are currently able to simultaneously project a large number of identical laser beams. The goal is to succeed in project different types of laser beams and then produce prototype nano-structures for the industrial partners.