CEM, champs électro-magnétiques, EMF, electromagnetic fields

How can we assess the health risks associated with exposure to electromagnetic fields?

As partners of the European SEAWave project, Télécom Paris and the C2M Chair are developing innovative measurement techniques to respond to public concern about the possible effects of cell phone usage. Funded by the EU to the tune of €8 million, the project will be launched in June 2022 for a period of 3 years. Interview with Joe Wiart, holder of the C2M Chair (Modeling, Characterization and Control of Electromagnetic Wave Exposure).

Could you remind us of the context in which the call for projects ‘Health and Exposure to Electromagnetic Fields (EMF)’ of the Horizon Europe program was launched?

Joe Wiart – The exponential use of wireless communication devices, throughout Europe, comes with a perceived risk associated with electromagnetic radiation, despite the existing protection thresholds (Recommendation 1999/519/CE and Directive 2013/35/UE). With the rollout of 5G, these concerns have multiplied. The Horizon Europe program will help to address these questions and concerns, and will study the possible impacts on specific populations, such as children and workers. It will intensify studies on millimeter-wave frequencies and investigate compliance analysis methods in these frequency ranges. The program will look at the evolution of electromagnetic exposure, as well as the contribution of exposure levels induced by 5G and new variable beam antennas. It will also investigate tools to better assess risks, communicate, and respond to concerns.

What is the challenge of SEAWave, one of the four selected projects, of which Télécom Paris is a partner?

JW – Currently, there is a lot of work, such as that of the ICNIRP (International Commission on Non-Ionizing Radiation Protection), that has been done to assess the compliance of radio-frequency equipment with protection thresholds. This work is largely based on conservative methods or models. SEAWave will contribute to these approaches in exposure to millimeter waves (with in vivo and in vitro studies). These approaches, by design, take the worst-case scenarios and overestimate the exposure. Yet, for a better control of possible impacts, as in epidemiological studies, and without underestimating conservative approaches, it is necessary to assess actual exposure. The work carried out by SEAWave will focus on establishing potentially new patterns of use, estimating associated exposure levels, and comparing them to existing patterns. Using innovative technology, the activities will focus on monitoring not only the general population, but also specific risk groups, such as children and workers.

What scientific contribution have Télécom Paris researchers made to this project that includes eleven Work Packages (WP)?

JW – The C2M Chair at Télécom Paris is involved in the work of four interdependent WPs, and is responsible for WP1 on EMF exposure in the context of the rollout of 5G. Among the eleven WPs, four are dedicated to millimeter waves and biomedical studies, and four others are dedicated to monitoring the exposure levels induced by 5G. The last three are dedicated to project management, but also to tools for risk assessment and communication. The researchers at Télécom Paris will mainly be taking part in the four WPs dedicated to monitoring the exposure levels induced by 5G. They will draw on measurement campaigns in Europe, networks of connected sensors, tools from artificial neural networks and, more generally, methods from Artificial Intelligence.

What are the scientific obstacles that need to be overcome?

JW – For a long time, assessing and monitoring exposure levels has been based on deterministic methods. With the increasing complexity of networks, like 5G, but also with the versatility of uses, these methods have reached their limits. It is necessary to develop new approaches based on the study of time series, statistical methods, and Artificial Intelligence tools applied to the dosimetry of radio frequency fields. Télécom Paris has been working in this field for many years; this expertise will be essential in overcoming the scientific obstacles that SEAWave will face.

The SEAWave consortium has around 15 partners. Who are they and what are your collaborations?

JW – These partners fall into three broad categories. The first is related to engineering: in addition to Télécom Paris, there is, for example, the Aristotle University of Thessaloniki (Greece), the Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (Italy), Schmid & Partner Engineering AG (Switzerland), the Foundation for Research on Information Technologies in Society (IT’IS, Switzerland), the Interuniversity Microelectronics Centre (IMEC, Belgium), and the CEA (France). The second category concerns biomedical aspects, with partners such as the IU Internationale Hochschule (Germany), Lausanne University Hospital (Switzerland), and the Fraunhofer-Institut für Toxikologie und Experimentelle Medizin (Germany). The last category is dedicated to risk management. It includes the International Agency for Research on Cancer (IARC, France), the Bundesamt für Strahlenschutz (Germany) and the French National Frequency Agency (ANFR, France).

We will mainly collaborate with partners such as the Aristotle University of Thessaloniki, the CEA, the IT’IS Foundation and the IMEC, but also with the IARC and the ANFR.

The project will end in 2025. In the long run, what are the expected results?

JW – First of all, tools to better control the risk and better assess the exposure levels induced by current and future wireless communication networks. All the measurements that will have been carried out will provide a good characterization of the exposure for specific populations (e.g. children, workers) and will lay the foundations for a European map of radio frequency exposure.

Interview by Véronique Charlet

RI-URBANS

Improving air quality with decision-making tools

Launched in October for a four-year period, the RI-URBANS project aims to strengthen synergies between European air quality monitoring networks and research infrastructures in the field of atmospheric sciences. IMT Nord Europe is a partner for this project, which received up to €8 million of funding from the European Union. Interview with  Stéphane Sauvage, professor, and Thérèse Salameh, R&D engineer.

European project RI-URBANS[1] was submitted in response to a call for tender dedicated to research infrastructures (RI) capable of tackling the challenges set by the European Green Deal. What is it all about?

Stéphane Sauvage The EU aims to play a leading role in fighting climate change at a global level. In a communication dated 14 July 2021, the 27 member states committed to turning the EU into the first climate neutral continent by 2050. To achieve this, they committed to reduce their greenhouse gas emissions by at least 55% by 2030, compared to levels in 1990, and to implement a series of initiatives related to the climate, energy, agriculture, industry, environment, oceans, etc.. Specifically, the Green Deal aims to protect our biodiversity and ecosystems, transition to a circular economy and reduce air, water and soil pollution. RI-URBANS falls under this initiative to reduce air pollution.

What is the goal of RI-URBANS?

S.S. Within this project, the objective is to connect the Aerosol, Clouds, and Trace gases Research InfraStructure (ACTRIS), Integrated Carbon Observation System (ICOS) and In-service Aircraft for a Global Observing System (IAGOS) – combining stationary and mobile observation and exploration platforms, calibration centers and data centers – with local stakeholders, such as air quality monitoring agencies, political decision-makers or regional stakeholders. The main objective is to provide them with high quality data and develop innovative service tools allowing them to better evaluate the health impact, identify sources of pollution in real time and forecast atmospheric pollution, in order to help decision-makers in improving air quality.

How will these tools be developed?

S.S. RI-URBANS will focus on ambient nanoparticles and atmospheric particulate matter, their sizes, constituents, source contributions, and gaseous precursors, evaluating novel air quality parameters, source contributions, and their associated health effects to demonstrate the European added value of implementing such service tools. To determine which areas are of interest, we have first to collect the available data on these variables and make it findable, accessible, interoperable and reusable, while offering decision-makers services and tools.

In order to test these services, a pilot phase will be deployed in nine European cities (Athens, Barcelona, Birmingham, Bucharest, Helsinki, Milan, Paris, Rotterdam-Amsterdam and Zurich). These cities have been identified as industrial, port, airport and road hotspots, with significant levels of pollution and have established air quality monitoring networks and research infrastructure units. In Paris, for example, the atmospheric research observatory SIRTA is a unit of ACTRIS and one of the most prominent sites in Europe offering the instrumentation, equipment and hosting capacities needed to study atmospheric physico-chemical processes.

What expertise do the IMT Nord Europe researchers bring?

Thérèse Salameh IMT Nord Europe research teams have internationally recognized expertise in the field of reactive trace gases, which can lead to the formation of secondary compounds, such as ozone or secondary organic aerosols. IMT Nord Europe’s participation in this project is connected to its significant involvement in the ACTRIS (Aerosol, Clouds, and Trace Gases Research InfraStructure) RI as a unit of the European Topical Center for reactive trace gases in situ measurements (CiGas). ACTRIS is a distributed RI bringing together laboratories of excellence and observation and exploration platforms, to support research on climate and air quality. It helps improve understanding of past, present and future changes in atmospheric composition and the physico-chemical processes that contribute to regional climate.

Who are the partners of RI-URBANS?

T.S. The project brings together 28 institutions (universities and research institutes) from 14 different countries. The three partners in France are the National Centre for Scientific Research (CNRS), National Institute for Industrial Environment and Risks (INERIS) and Institut Mines-Télécom (IMT). For this project, IMT Nord Europe researchers are collaborating in particular with Swiss federal laboratories for materials science and technology EmpaPaul Scherrer Institute (PSI)Spanish National Research Council (CSIC) and INERIS.

The project has just been launched. What is the next step for IMT Nord Europe?

T.S. In the coming months, we will conduct an assessment collecting observation data for reactive trace gases potentially available in main European cities. We will then need to evaluate the quality and relevance of the collected information, before applying source apportionment models to identify the main sources of pollution in these European cities.

[1] This project is funded by Horizon 2020, the European Union framework program for research and innovation (H2020), with grant agreement ID 101036245. It is conjointly coordinated by CSIC (Spain) and University of Helsinki (Finland)Find out more.

Read on I’MTech

Easier access to research infrastructure for the European atmospheric science community

Improving access to large facilities for research on climate and air quality and optimizing use are the objectives of the European ATMO-ACCESS project. Véronique Riffault and Stéphane Sauvage, researchers at IMT Nord Europe, one of the project’s 38 partner institutions, explain the issues involved.

What was the context for developing the ATMO-ACCESS project?

Stéphane Sauvage – The ATMO-ACCESS project responds to a H2020-INFRAIA call for pilot projects specifically opened for certain research infrastructure (RI) targeted by the call, to facilitate access for a wide community of users and develop innovative access services that are harmonized at the European level.  

IMT Nord Europe’s participation in this project is connected to its significant involvement in the ACTRIS (Aerosol, Clouds, and Trace Gases Research InfraStructure) RI. ACTRIS is a distributed RI bringing together laboratories of excellence and observation and exploration platforms, to support research on climate and air quality. It helps improve understanding of past, present and future changes in atmospheric composition and the physico-chemical processes that contribute to regional climate variability

What is the goal of ATMO-ACCESS?

S.S. – ATMO-ACCESS is intended for the extended atmospheric science community. It involves three RI: ACTRISICOS and IAGOS, combining stationary and mobile observation and exploration platforms, calibration centers and data centers. It’s a pilot project aimed at developing a new model of integrating activities for this infrastructure, in particular by providing a series of recommendations for harmonized, innovative access procedures to help establish a sustainable overall framework .

What resources will be used to reach this goal?

S.S. – The project has received €15 million in funding , including €100 K for IMT Nord Europe where four research professors and a research engineer are involved. ATMO-ACCESS will provide scientific and industrial users with physical and remote access to 43 operational European atmospheric research facilities, including ground observation stations and simulation chambers as well as mobile facilities and calibration centers which are essential components of RI.

Why is it important to provide sustainable access to research facilities in the field of atmospheric science?

Véronique Riffault – The goal  is to optimize the use of large research facilities, pool efforts and avoid duplication for streamlining and environmental transition purposes, while promoting scientific excellence and maintaining a high level in the transfer of knowledge and expertise, international collaborations, training for young scientists and the contribution of RI to innovative technologies and economic development.

What role do IMT Nord Europe researchers play in this consortium?

V.R. – IMT Nord Europe researchers are responsible for developing virtual training tools for the users of these research facilities and their products. Within this scientific community, IMT Nord Europe has recognized expertise in developing innovative learning resources (Massive Open Online Course-MOOC, serious games), based on the resources the school has already created in collaboration with its Educational Engineering center, in particular a first MOOC in English on the causes and impacts of air pollution, and a serious game, which should be incorporated into a second module of this MOOC currently in development.

As part of ATMO-ACCESS, a pilot SPOC (Small Private Online Course) will present the benefits and issues related to this infrastructure and a serious game will apply the data proposed by observatories and stored in data centers, while video tutorials for certain instruments or methodologies will help disseminate good practices.

Who are your partners and how will you collaborate scientifically?

V.R. – The project is coordinated by CNRS and brings together 38 partner institutions from 19 European countries. We’ll be working with scientific colleagues from a variety of backgrounds: calibration centers responsible for ensuring measurement quality, data centers for the technical development of resources,  and of course, the community as a whole to best respond to expectations and  engage in a continuous improvement process. In addition to the academic world, other users will be able to benefit from the tools developed through the ATMO-ACCESS project: major international stakeholders and public authorities (ESA, EEA, EUMETSAT, EPA, governments, etc.) as well as the private sector.

The project launch meeting has just been held. What are the next important steps?

V.R. – That’s right, the project was launched in mid-May. The first meeting for the working group in which IMT Nord Europe is primarily involved is scheduled for after the summer break. Our first deliverable will be the interdisciplinary SPOC for atmospheric science, planned for less than two years from now. The project will also launch its first call for access to RI intended for atmosphere communities and beyond.

Interview by Véronique Charlet

Also read on I’MTech

Gouvernance des données

Data governance: trust it (or not?)

The original version of this article (in French) was published in the quarterly newsletter no. 20 (March 2021) of the Values and Policies of Personal Information (VP-IP) Chair.

On 25 November 2020, the European Commission published its proposal for the European data governance regulation, the Data Governance Act (DGA) which aims to “unlock the economic and societal potential of data and technologies like artificial intelligence “. The proposed measures seek to facilitate access to and use of an ever-increasing volume of data. As such, the text seeks to contribute to the movement of data between member states of the European Union (as well as with States located outside the EU) by promoting the development of “trustworthy” systems for sharing data within and across sectors.

Part of a European strategy for data

This proposal is the first of a set of measures announced as part of the European strategy for data presented by the European Commission in February 2020. It is intended to dovetail with two other proposed regulations dated on 15 December 2020: the Digital Services Act (which aims to regulate the provision of online services, while maintaining the principle of the prohibition of a surveillance obligation) and the Digital Market Act (which organizes the fight against unfair practices by big platforms against companies who offer services through their platforms). A legislative proposal for the European Health Data Space is expected for the end of 2021 and possibly a “data law.”

The European Commission also plans to create nine shared European data spaces in strategic economic sectors and public interest areas, from the manufacturing industry to energy, or mobility, health, financial data and green deal data. The first challenge to overcome in this new data ecosystem will be to transcend national self-interests and those of the market.  

The Data Governance Act proposal does not therefore regulate online services, content or market access conditions: it organizes “data governance,” meaning the conditions for sharing data, with the market implicitly presumed to be the paradigm for sharing. This is shown in particular by an analysis carried out through the lens of trust (which could be confirmed in many other ways).

The central role of trust

Trust plays a central and strategic role in all of this legislation since the DGA “aims to foster the availability of data for use, by increasing trust in data intermediaries and by strengthening data-sharing mechanisms across the EU.” “Increasing trust”, “building trust”, ensuring a “higher level of trust”, “creating trust”, “taking advantage of a trustworthy environment”, “bringing trust” – these expressions appearing throughout the text point to its fundamental aim.

However, despite the fact that the proposal takes great care to define the essential terms on which it is based (“data“, “reuse”, “non-personal data”, “data holder”, “data user”, “data altruism” etc.), the term “trust,” along with the conditions for ensuring it, are exempt from such semantic clarification – even though “trust” is mentioned some fifteen times.

As in the past with the concept of dignity, which was part of the sweeping declarations of rights and freedoms in the aftermath of the Second World War but was nevertheless undefined –  despite the fact that it is the cornerstone of all bioethical texts, the concept of trust is never made explicit. Lawmakers, and those to whom the obligations established by the legal texts are addressed, are expected to know enough about what dignity and trust are to implicitly share the same understanding. As with the notion of time for Saint Augustine, everyone is supposed to understand what it is, even though they are unable to explain it to someone else.

While some see this as allowing for a certain degree of “flexibility” to adapt the concept of trust to a wide range of situations and a changing society, like the notion of privacy, others see this vagueness – whether intentional or not – at best, as a lack of necessary precision, and at worst, as an undeclared intention.

The implicit understanding of trust

In absolute terms, it is not very difficult to understand the concept of trust underlying the DGA (like in the Digital Services Act in which the European Commission proposes, among other things, a new mysterious category of “trusted flaggers“). To make it explicit, the main objectives of the text must simply be examined more closely.

The DGA represents an essential step for open data. The aim is clearly stated: to set out the conditions for the development of the digital economy by creating a single data market. The goal therefore focuses on introducing a fifth freedom: the free movement of data, after the free movement of goods, services, capital and people.  

While the GDPR created a framework for personal data protection, the DGA proposal intends to facilitate its exchange, in compliance with all the rules set out by the GDPR (in particular data subjects’ rights and consent when appropriate).

The scope of the proposal is broad.

The term data is used to refer to both personal data and non-personal data, whether generated by public bodies, companies or citizens. As a result, interaction with the personal data legislation is particularly significant. Moreover, the DGA proposal is guided by principles for data management and re-use that were developed for research data. The “FAIR” principles for data stipulate that this data must be easy to find, accessible, interoperable and re-usable, while providing for exceptions that are not listed and unspecified at this time.

To ensure trust in the sharing of this data, the category of “data intermediary” is created, which is the precise focus of all the political and legal discourse on trust. In the new “data spaces” which will be created (meaning beyond those designated by the European Commission), data sharing service providers will play a strategic role, since they are the ones who will ensure interconnections between data holders/producers and data users.

The “trust” which the text seeks to increase works on three levels:

  1. Trust among data producers (companies, public bodies data subjects) to share their data
  2.  Trust among data users regarding the quality of this data
  3. Trust among trustworthy intermediaries in the various data spaces

Data intermediaries

This latter group emerges as organizers for data exchange between companies (B2B) or between individuals and companies (C2B). They are the facilitators of the single data market. Without them, it is not possible to create it from a technical viewpoint or make it work. This intermediary position allows them to have access to the data they make available; it must be ensured that they are impartial.

The DGA proposal differentiates between two types of intermediaries: “data sharing service providers,” meaning those who work “against remuneration in any form”  with regard to both personal and non-personal data (Chapter III) and “data altruism organisations” who act “without seeking a reward…for purposes of general interest such as scientific research or improving public services” (Chapter VI).

For the first category, the traditional principle of neutrality is applied.

To ensure this neutrality, which “is a key element to bring trust, it is therefore necessary that data sharing service providers act only as intermediaries in the transactions, and do not use the data exchanged for any other purpose”. This is why data sharing services must be set up as legal entities that are separate from other activities carried out by the service provider in order to avoid conflicts of interest. In the division of digital labor, intermediation becomes a specialization in its own right. To create a single market, we fragment the technical bodies that make it possible, and establish a legal framework for their activities.

In this light, the real meaning of “trust” is “security” – security for data storage and transmission, nothing more, nothing less. Personal data security is ensured by the GDPR; the security of the market here relates to that of the intermediaries (meaning their trustworthiness, which must be legally guaranteed) and the transactions they oversee, which embody the effective functioning of the market.

From the perspective of a philosophical theory of trust, all of the provisions outlined in the DGA are therefore meant to act on the motivation of the various stakeholders, so that they feel a high enough level of trust to share data. The hope is that a secure legal and technical environment will allow them to transition from simply trusting in an abstract way to having trust in data sharing in a concrete, unequivocal way.

It should be noted, however, that when there is a conflict of values between economic or entrepreneurial freedom and the obligations intended to create conditions of trust, the market wins. 

In the impact assessment carried out for the DA proposal, the Commission declared that it would choose neither a high-intensity regulatory intervention option (compulsory certification for sharing services or compulsory authorization for altruism organizations), nor a low-intensity regulatory intervention option (optional labeling for sharing services or voluntary certification for altruism organizations). It opted instead for a solution it describes as “alternative” but which is in reality very low-intensity (lower even, for example, than optional labeling in terms of guarantees of trust). In the end, a notification obligation with ex post monitoring of compliance for sharing services was chosen, along with the simple possibility of registering as an “organisation engaging in data altruism.”

It is rather surprising that the strategic option selected includes so few safeguards to ensure the security and trust championed so frequently by the European Commission champion in its official communication.

An intention based on European “values”

Margrethe Vestager, Executive Vice President of the European Commission strongly affirmed this: “We want to give business and citizens the tools to stay in control of data. And to build trust that data is handled in line with European values and fundamental rights.”

But in reality, the text’s entire reasoning shows that the values underlying the DGA are ultimately those of the market – a market that admittedly respects fundamental European values, but that must entirely shape the European data governance model. This offers a position to take on the data processing business model used by the major tech platforms. These platforms, whether developed in the Silicon Valley ecosystem or another part of the world with a desire to dominate, have continued to gain disproportionate power in light of their business model. Their modus operandi is inherently based on the continuous extraction and complete control of staggering quantities of data.

The text is thus based on a set of implicit reductions that are presented as indisputable policy choices. The guiding principle, trust, is equated with security, meaning security of transactions. Likewise, the European values as upheld in Article 2 of the Treaty on European Union, which do not mention the market, are implicitly related to those that make the market work. Lastly, governance, a term that has a strong democratic basis in principle, which gives the DGA its title, is equated only with the principles of fair market-based sharing, with the purported aim, among other things, to feed the insatiable appetite of “artificial intelligence”.

As for “data altruism,” it is addressed in terms of savings in transaction costs (in this case, costs related to obtaining consent), and the fact that altruism can be carried out “without asking for remuneration” does not change the market paradigm: a market exchange is a market exchange, even when it’s free.

By choosing a particular model of governance implicitly presented as self-evident, the Commission  fails to recognize other possible models that could be adopted to oversee the movement of data.  Just a few examples that could be explored and which highlight the many overlooked aspects of the text, are:

  1.  The creation of a public European public data service
  2. Interconnecting the public services of each European state (based on the eIDAS or Schengen Information System (SIS) model; see also France’s public data service, which presently applies to data created as part of public services by public bodies)
  3. An alternative to a public service: public officials, like notaries or bailiffs, acting under powers delegated by a level of public authority
  4. A market-based alternative: pooling of private and/or public data, initiated and built by private companies.

What kind of data governance for what kind of society?

This text, however, highlights an interesting concept in the age of the “reign of data”: sharing. While data is trivially understood as being the black gold of the 21st century, the comparison overlooks an unprecedented and essential aspect: unlike water, oil or rare metals, which are finite resources, data is an infinite resource, constantly being created and ever-expanding.

How should data be pooled in order to be shared?

Should data from the public sector be made available in order to transfer its value creation to the private sector? Or should public and private data be pooled to move toward a new sharing equation? Will we see the emergence of hybrid systems of values that are evenly distributed or a pooling of values by individuals and companies? Will we see the appearance of a “private data commons”? And what control mechanisms will it include?

Will individuals or companies be motivated to share their data? This would call for quite a radical change in economic culture.

The stakes clearly transcend the simple technical and legal questions of data governance. Since the conditions are those of an infinite production of data, these questions make us rethink the traditional economic model.

It is truly a new model of society that must be discussed. Sharing and trust are good candidates for rethinking the society to come, as long as they are not reduced solely to a market rationale.

The text, in its current form, certainly offers points to consider, taking into account our changing societies and digital practices. The terms, however, while attesting to worthwhile efforts for categorization adapted to these practices, require further attention and conceptual and operational precision.   

While there is undoubtedly a risk of systematic commodification of data, including personal data, despite the manifest wish for sharing, it must also be recognized that the text includes possible advances.  The terms of this collaborative writing  are up to us – provided, of course, that all of the stakeholders are consulted, including citizens, subjects and producers of this data.


Claire Levallois-Barth, lecturer in Law at Télécom Paris, coordinator of the VP-IP chair, co-founder of the VP-IP chair.

Mark Hunyadi, professor of moral and political philosophy at the Catholic University of Louvain (Belgium), member of the VP-IP chair.

Ivan Meseguer, European Affairs, Institut Mines-Télécom, co-founder of the VP-IP chair.

IMPETUS: towards improved urban safety and security

How can traffic and public transport be managed more effectively in a city, while controlling pollution, ensuring the safety of users and at the same time, taking into account ethical issues related to the use of data and mechanisms to ensure its protection? This is the challenge facing IMPETUS, a €9.3 million project receiving funding of €7.9 million from the Horizon 2020 programme of the European Union[1]. The two-year project launched in September 2020 will develop a tool to increase cities’ resilience to security-related events in public areas. An interview with Gilles Dusserre, a researcher at IMT Mines Alès, a partner in the project.

What was the overall context in which the IMPETUS project was developed?

Gilles Dusserre The IMPETUS project was the result of my encounter with Matthieu Branlat, the scientific coordinator of IMPETUS, who is a researcher at SINTEF (Norwegian Foundation for Scientific and Industrial Research) which supports research and development activities. Matthieu and I have been working together for many years. As part of the eNOTICE European project, he came to take part in a use case organized by IMT Mines Alès on health emergencies and the resilience of hospital organizations. Furthermore, IMPETUS is the concrete outcome of efforts made by research teams at Télécom SudParis and IMT Mines Alès for years to promote joint R&D opportunities between IMT schools.

What are the security issues in smart cities?

GD A smart city can be described as an interconnected urban network of sensors, such as cameras and environmental sensors; it offers a multitude of valuable big data. In addition to better managing traffic and public transport and controlling pollution, this data allows for better police surveillance, adequate crowd control. But these smart systems increase the risk of unethical use of personal data, in particular given the growing use of AI (artificial intelligence) combined with video surveillance networks. Moreover, they increase the attack surface for a city since several interconnected IoT (Internet of Things) and cloud systems control critical infrastructure such as transport, energy, water supply and hospitals (which play a central role in current problems). These two types of risks associated with new security technologies are taken very seriously by the project: a significant part of its activities is dedicated to the impact of the use of these technologies on operational, ethical and cybersecurity aspects. We have groups within the project and external actors overseeing ethical and data privacy issues. They work with project management to ensure that the solutions we develop and deploy adhere to ethical principles and data privacy regulations. Guidelines and other decision-making tools will also be developed for cities to help them identify and take into account the ethical and legal aspects related to the use of intelligent systems in security operations.

What is the goal of IMPETUS?

GD In order to respond to these increasing threats for smart cities, the IMPETUS project will develop an integrated toolbox that covers the entire physical and cybersecurity value chain. The tools will advance the state of the art in several key areas such as detection (social media, web-based threats), simulation and analysis (AI-based tests) and intervention (human-machine interface and eye tracking, optimization of the physical and cyber response based on AI). Although the toolbox will be tailored to the needs of smart city operators, many of the technological components and best practices will be transferable to other types of critical infrastructure.

What expertise are researchers from IMT schools contributing to the project?  

GD The work carried out by Hervé Debar‘s team at Télécom SudParis, in connection with researchers at IMT Mines Alès, resulted in the creation of the overall architecture of the IMPETUS platform, which will integrate the various modules of smart city as proposed in the project. Within this framework, the specification of the various system components, and the system as a whole, will be designed to meet the requirements of the final users (cities of Oslo and Padua), but also to be scalable to future needs.

What technological barriers must be overcome?

GD The architecture has to be modular, so that each individual component can be independently upgraded by the provider of the technology involved. The architecture also has to be integrated, which means that the various IMPETUS modules can exchange information, thereby providing significant added value compared to independent smart city and security solutions that work as silos.  

To provide greater flexibility and efficiency in terms of collecting, analyzing, storing and access to data, the IMPETUS platform architecture will combine IoT and cloud computing approaches. Such an approach will reduce the risks associated with an excessive centralization of large amounts of smart city data and is in line with the expected changes in communication infrastructure, which will be explored at a later date.  

This task will also develop a testing plan. The plan will include the prerequisites, the execution of tests, and the expected results. The acceptance criteria will be defined based on the priority and percentage of successful test cases. In close collaboration with the University of Nimes, IMT Mines Alès will work on innovative approach to environmental risks, in particular related to chemical or biological agents, and to hazard assessment processes.

The consortium includes 17 partners and 11 EU member states and associated countries. What are their respective roles?

GD The consortium was formed to bring together a group of 17 organizations that are complementary in terms of basic knowledge, technical skills, ability to create new knowledge, business experience and expertise. The consortium comprises a complementary group of academic institutions (universities) and research organizations, innovative SMEs, industry representatives, NGOs and final users.

The work is divided into a set of interdependent work packages. It involves interdisciplinary innovation activities that require a high level of collaboration. The overall strategy consists of an iterative exploration, an assessment and a validation, involving the final users at every step.

[1] This project receives funding from Horizon 2020, the European Union’s Framework Programme for Research and Innovation (H2020) under grant agreement N° 883286. Learn more about IMPETUS.

MANIFESTS

Decision support tools for maritime accident management

The European MANIFESTS project, launched in January, is a two-year project bringing together a consortium of nine research institutions and public administrations with complementary expertise in managing maritime accidents. Funded by the European Commission, this project aims to improve responses to emergencies related to these accidents. An interview with Laurent Aprin, a researcher at IMT Mines Alès, a project partner.

Could you describe the broader context of the MANIFESTS project?

Laurent Aprin –The MANIFESTS project (Managing Risks and Impacts From Evaporating and Gaseous Substances to Population Safety) is a follow-up to the European HNS-MS project funded from 2015 to 2017 by the European Commission’s Directorate General for European Civil Protection and Humanitarian Aid (DG-ECHO). The purpose of this project was to study and model the consequences of chemical spills in the ocean and determine the vulnerability of the environment, people and goods depending on the chemicals spilled. We wanted to continue our research by expanding the consortium and addressing questions submitted by the various stakeholders at the end-of-project meeting, in particular the consequences of evaporating substances that are likely to form toxic clouds, which are flammable, or even explosive.

What is the aim of the MANIFESTS project?

LA ­– Responding to maritime accidents can be especially challenging when they involve Hazardous and Noxious Substances (HNS) which act like gases or evaporators. Due to their potential to form toxic or combustible clouds, fact-based decisions are needed to protect the crew, responders, coastal communities and the environment. But when an accident is declared, key information for assessing risks for responders or emergency teams is not always available. Allowing a ship that presents a risk to dock in a place of refuge due to a lack of knowledge and data could have major implications for coastal communities. The aim of MANIFESTS is to respond to these uncertainties and improve response capacity with decision support tools and novel and innovative operational guidelines. How so? By facilitating access to knowledge and databases, all of which are hosted on a dedicated open source web platform accessible to planners and responders.

How will you achieve this goal?

LA – The MANIFESTS project is divided into four activities (workpackages, WP) supported by two cross-project activities, project management (WP1) and project communication (WP6). The technical work includes producing new data and knowledge on gases and evaporating substances that may be released during marine accidents. This information will be obtained by acquiring knowledge from the literature and research data (WP2). WP3 involves developing methods to assess and manage risks and testing response tools through computer-based and field trials. WP4 will focus on developing and improving tools for modeling HNS behavior and developing a MANIFESTS decision support system. This WP includes developing  new tools based on the previously described WPs and upgrading the models developed in the existing HNS-MS and MARINER projects (WP5).

L’attribut alt de cette image est vide, son nom de fichier est image.png.

What scientific expertise are IMT Mines Alès researchers bringing to this project?

LA – IMT Mines Alès[1] researchers are primarily involved in two WPs:

  • WP2: improving knowledge and data on gases and evaporating substances for which IMT Mines Alès is the coordinator. This task aims to characterize and theoretically and experimentally assess the behavior and impacts of HNS when they are released into the ocean, with a particular focus on the release of volatile substances that may lead to the formation of a potentially toxic, flammable and/or explosive gas cloud.
  • WP6: strategy for dissemination, exploitation and visibility, in particular to develop proof of concept (PoC) for a serious games to train emergency responders and planners involved in managing marine pollution events. Using an immersive scenario, this crisis simulation makes it possible to test the implementation of response plans, the response cell’s capacity to fulfill its missions (including adapting during a dynamically evolving scenario) and to make defensible decisions under demanding, realistic conditions.

Who are your partners for this project and how are you working together?

LA – The project consortium is coordinated by Cedre (France)[2], and includes 9 research institutions and public administrations from 6 countries (France, Belgium, UK, Norway, Spain, Portugal) with strong complementary expertise: ARMINES/IMT Mines Alès (France), Royal Belgium Institute of Natural Science (RBINS, Belgium), Instituto Tecnológico para el Control del Medio Marino de Galicia (INTECMAR, Spain), Centro tecnologico del mar/Fundacion CETMAR (Spain), Instituto superior tecnico (Portugal), Department of Health (UK), Meteorologisk Institutt (Norway) and the Federal Public Service for Public Health, Food Chain Safety and Environment (Belgium). They are involved in all the aspects of marine pollution addressed by the project: chemical analysis, pollution modeling, developing decision support tools, risk assessment and management, training and exercises, knowledge transfer. MANIFESTS will also benefit from collaboration with an advisory committee comprising 6 national maritime authorities who will be the primary end-users of the project results, including the French Navy, CEPPOL (Centre of Practical Expertise for Pollution Response) and customs for France.

What are the next big steps for the project?

LA – The MANIFESTS project was launched on 1 January 20201 and is set to run for two years. The first phase will involve an accident study and a literature review of the modeling of the behavior of evaporating substances in the ocean. The next steps will focus on creating experimental designs to characterize the  evaporation rate of substances and the consequences of explosions, programming consequence models (dispersion, fire and explosion) and conducting a large-scale trial in the Atlantic Ocean.


[1] The IMT Mines Alès team includes Laurent Aprin, Aurélia Bony-Dandrieux, Philippe Bouillet, Frédéric Heymes, Christian Lopez and Jérôme Tixier.

[2] Laura Cotte, engineer, and Stéphane Le Floch, Head of the Research Department at the Centre for Documentation, Research and Experimentation on Accidental Water Pollution (Cedre), are the initiators and coordinators of the project.

Interview by Véronique Charlet

Projet MAESTRIA AVC

A European consortium for early detection of stroke and atrial fibrillation

The European project MAESTRIA, launched in March 2021 and set to run 5 years, will take on the major challenges of data integration and personalized medicine with the aim of preventing heart rhythm problems and stroke. How? By using artificial intelligence approaches to create multi-parametric digital tools. Led by Sorbonne University and funded by the European Union to the tune of €14 million, the project brings together European, English, Canadian and American partners. An interview with Anne-Sophie Taillandier, Director of Teralab, IMT’s Big Data and AI platform, which is a member of the consortium.   

In what health context was the MAESTRIA developed?

Anne-Sophie Taillandier – Atrial fibrillation (AF), heart rhythm disorder and stroke are major health problems in Europe. Most often, they are the clinical expression of atrial cardiomyopathy, which is under-recognized due to a lack of specific diagnostic tools.

What is the aim of MAESTRIA?

AST  MAESTRIA (for Machine Learning Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation) aims to prevent the risks associated with atrial fibrillation in order to ensure healthy ageing in the European population. Multidisciplinary research and stratified approaches (involving adapting  a patient’s treatment depending on his/her biological characteristics) are needed to diagnose and treat AF and stroke.

What technologies will be deployed?

AST  “Digital twin” technologies, a powerful data integrator combining biophysics and AI, will be used to generate virtual twins of human heart atria using patient-specific data.

MAESTRIA will create digital multi-parametric digital tools based on a new generation of biomarkers that integrate artificial intelligence (AI) and big data from cutting-edge imaging, electrocardiography and omics technologies (including physiological responses modulated by individual susceptibility and lifestyle factors). Diagnostic tools and personalized therapies for atrial cardiomyopathy will be developed.

Unique experimental large-animal models, ongoing patient cohorts and a prospective cohort of MAESTRIA patients will provide rigorous validation of the new biomarkers and tools developed. A dedicated central laboratory will collect and harmonize clinical data. MAESTRIA will be organized as a user-centered platform that is easily accessible via clinical parameters commonly used in European hospitals.

What is the role of Teralab, IMT’s Big Data and AI platform?

AST – The TeraLab team, led by Natalie Cernecka and Luis Pineda, is playing a central role in this project, in three ways. First of all, TeraLab will be involved in making heterogeneous, sensitive health data available for the consortium, while ensuring legal compatibility and security.

Second, TeraLab will build and manage the data hub for the project data, and make this data available to the team of researchers so that they can aggregate and analyze it, and then build a results demonstrator for doctors and patients.

And last but not least, TeraLab will oversee the data management plan or DMP, an essential part of the management of any European project. It is a living document that sets out a plan for managing the data used and generated within the framework of the project. Initiated at the start of the project, this plan is updated periodically to make sure that it still appropriate in light of how the project is progressing. It is even more necessary when it’s a matter of health data management.

Who are the partners for MAESTRIA ?

AST – MAESTRIA is a European consortium of 18 clinicians, scientists and pharmaceutical industry representatives, at the cutting edge of research and medical care for AF and stroke patients. A scientific advisory board including potential clinician users will help MAESTRIA respond to clinical and market needs.

It’s an international project, focused on the EU countries, but certain partners come from England, Canada and the United States. Oxford University, for example, has developed interesting solutions for the processing and aggregation of cardiological data. It is a member of the consortium and we will, of course, be working with its researchers.

We have important French partners such as AP-HP (Assistance Publique-Hôpitaux de Paris, Paris Hospital Authority) involved in data routing and management. The project is coordinated by Sorbonne University.

What are the next big steps for the project?

AST – The MAESTRIA has just been launched, the first big step is making the data available and establishing the legal framework.

Because the data used in this project is heterogeneous – hence the importance of aggregating it – we must understand the specific characteristics of each kind of data (human data, animal data, images, medical files etc.) and adapt our workspaces to users. Since this data is sensitive, security and confidentially challenges are paramount.

Learn more about MAESTRIA

Interview by Véronique Charlet

e-VITA

e-VITA, a virtual coach for seniors

Virtual coaching can play a crucial role in maintaining healthy and active ageing through early detection of risks and intervention tailored to the individual needs of senior citizens. However, current technologies do not meet these requirements. Instead they offer limited interaction and are often intrusive. The 22 European and Japanese partners of the e-VITA project will develop a “multi-modal personal voice coach” to assist and safeguard the elderly person at home. With a budget of €4m funded by the European Union and of an equivalent amount funded by the Japanese MIC (Ministry of Internal Affairs and Communications), the project began in January 2021 for a duration of 3 years. Interview with Jérôme Boudy, researcher at Télécom SudParis, and project partner.

How did the European e-VITA project come about?

Jérôme Boudy – In a context of ageing populations, the idea of this project gradually took shape from 2016 onwards. Initially, there were ongoing projects such as EMPATHIC, of which Télécom SudParis is a partner, followed by a collaboration with Brazil, and finally the e-VITA (European-Japanese virtual coach for smart ageing) project with Japan, which aims to develop tools to ensure active and healthy ageing (AHA) through the early detection of the risks associated with old age. 

Read more on I’MTech: AI to assist the elderly

What is the goal of e-VITA?

JB – The aim is to keep the elderly at home in a secure environment. Founded on international cooperation between Europe and Japan, e-VITA offers an innovative approach to “virtual coaching” that addresses the crucial areas of active and healthy ageing: cognition, physical activity, mobility, mood, social interaction, leisure… enabling older people to better manage their own health and daily activities.

What method will be used?

JB – By taking  into account different cultural factors in European countries and in Japan, in particular the acceptability of interfaces used preferentially in these countries (smartphones, 3D holograms, social robots, etc.) e-VITA will develop an automatic multi-modal human-machine interface. Based on Natural Language Processing (NLP) and automatic spoken dialog management, it will also be equipped with several complementary non-verbal modalities such as recognition of a person’s gestures, emotions, and situation.

This “virtual coach” will detect potential risks in the user’s daily environment and how these risks could be prevented by collecting data from external sources and non-intrusive sensors. It will provide individualized profiling and personalized recommendations based on big data analytics and socio-emotional informatics. Interoperability and data confidentiality will be guaranteed through FIWARE and a federated data AI platform.

What expertise will Télécom SudParis and IMT Atlantique researchers involved in e-VITA bring to the table?

JB – Researchers from IMT schools will mainly ensure the interoperability and processing of the data provided by the different sensors, as well as the automatic monitoring of emotions on the face. In addition, our two living labs – Experiment’HaaL for IMT Atlantique and Evident for Télécom SudParis –  will be made available to project partners. Finally, we will be in charge of the management of the “dissemination and exploitation” work package.

The project brings together a large number of partners. What are their roles in this project?

JBThe consortium brings together 12 partners in Europe and 10 in Japan, each with their respective complementary roles. Siegen University (Germany) and Tohoku University, are co-ordinating the project for Europe and for Japan, which brings together three major groups: end users responsible for needs specification and field assessment, such as APHP (France), AGE Platform Europe (Belgium), IRNCA (Italy), Caritas Germany, NCGG and IGOU (Japan); Academics and research organizations specializing in AI algorithms (automatic learning, fusion, expression recognition, etc.): alongside the IMT schools are Fraunhofer and INFAI (Germany), UNIVPM (Italy), Tohoku University, AIST, Waseda University (Japan)… ; and lastly, industrialists in charge of technical definition and process integration, mainly SMEs: IXP (Germany), Ingegneria Informatica (Italy), Delta Dore (France), Gatebox and NEU (Japan), and a single large group: Misawa (Japan)

What are the expected results?

JB – The creation of a “multi-modal personal voice coach” whose job is to assist, accompany and safeguard the elderly at home, and the operation of this system through several physical interfaces (smart-phones, robots, etc…) thanks to the integration of start-up incubators in our living labs and structures.

The coaching system will be installed into the living environments of healthy elderly people in France, Germany, Italy, and Japan to evaluate its feasibility and effectiveness. The results of the e-VITA project also include new standards and policies beyond technology, and will therefore be explored and transferred across Europe, Japan and worldwide.

What are the next big steps for the e-VITA project?

JB – The next step is the phase of specifying user needs according to cultural factors, and defining the architecture of the targeted system, which requires the organization of several workshops.

Find out more about e-VITA

Interview by Véronique Charlet

RAMP UP Seed

Supporting companies in the midst of crisis

The RAMP-UP Seed project is one of 9 new projects to have been selected by the German-French Academy for the Industry of the Future as part of the “Resilience and Sustainability for the Industry of the Future” call for projects. It focuses on helping companies adapt their production capacities to respond to crisis situations. The project relies on two main areas of expertise to address this issue: ramp-up management and artificial intelligence (AI). Khaled Medini and Olivier Boissier, researchers at Mines Saint-Étienne,[1] a partner of the project, present the issues.

Can you describe the context for the RAMP-UP Seed project?

Khaled Medini The RAMP-UP Seed project is one of 9 new projects to have been selected by the German-French Academy for the Industry of the Future (GFA) for the call for projects on the sustainability and resiliency of companies in the industry of the future. This project is jointly conducted by Mines Saint-Étienne and TUM (Technische Universität München), and is a continuation of work carried out on diversity management, ramp-up management, and multi-agent systems at Institut Fayol related to the industry of the future.

What is the project’s goal?

KM The health crisis has highlighted the limitations of current industrial models when it comes to providing a quick response to market demands in terms of quality and quantity, and production constraints related to crisis situations. Ramp-up and ramp-down management is a key to meeting these challenges. The goal of RAMP-UP Seed is to establish a road map for developing a tool-based methodology in order to increase companies’ sustainability and resilience specifically by targeting the adaptation phase and production facilities.

How do you plan to achieve this? What are the scientific obstacles you must overcome?

Olivier Boissier The project addresses issues related to the topics of production systems and artificial intelligence. The goal is to remedy a lack of methodology guides and tools for strengthening companies’ sustainability and resilience. Two main actions will be prioritized for this purpose during the initial seed stage:

  • An analysis of existing approaches and identification with industrial stakeholders of needs and use cases, which will be conducted jointly with two partners;
  • Development of a proposal for a collaborative project involving Franco-German academic and industrial partners in order to respond to European calls for projects.

From an operational standpoint, work meetings and workshops are held regularly with teams from Mines Saint-Étienne and the TUM in a spirit of collaboration.

Who are the partners involved in this project and what are their respective roles?

KM We started RAMP-UP Seed in partnership with the TUM Institute of Automation and Information Systems with a focus on two main areas: ramp-up management and artificial intelligence. Expertise from the Territoire and IT’M Factory platforms from Institut Henri Fayol, and TUM platforms will be used to develop this dynamic further.

Who will benefit from the methods and tools developed by RAMP-UP Seed?

OB The purpose of the multi-agent optimization and simulation tools and industrial management tools to be developed through this project is to provide decision-making tools for exploring, testing and better managing ramp-up in the manufacturing and service sectors. Special attention will also be given to the health crisis, with a focus on the health sector.

What are the next big steps for the project?

KM RAMP-UP Seed is a seed project. In addition to analyzing current trends, one of the key goals is to develop joint responses to calls for projects in the fields of artificial intelligence and industrial management.

[1] Khaled Medini is a researcher at the Laboratory of Informatics, Modeling and Optimization of Systems (LIMOS), joint research unit UCA/Mines Saint-Étienne/CNRS 6158). Olivier Boissier is a researcher at Hubert Curien Laboratory, joint research unit CNRS 5516/Mines Saint-Étienne).

Interview by Véronique Charlet

EuHubs4data

Data and AI: fostering innovation at European level

EuHubs4data, a project funded by the European Union, seeks to make a big contribution to the growth of European SMEs, start-ups and web-based companies in the global data economy. How? By providing them with a European catalogue of data-driven solutions and services in an effort to foster innovation in this field. The project was launched on 1 September 2020 and will run for three years, with a budget of €12.5 Million. It brings together 12 Digital Innovation Hubs (DIH) across 9 European Union countries. One of these innovation hubs is TeraLab, IMT’s big data and artificial intelligence platform. An interview with Natalie Cernecka, Head of Business Development at TeraLab.

What are the goals of the EuHubs4data project, in which TeraLab is a partner?

Natalie Cernecka The goal of the project is to bring together services provided by European big data hubs to take full advantage of the benefits offered by the various members of the network. 

There are nearly 200 digital innovation hubs (DIH) in Europe. Some of them are specialized in data. Individually, these hubs are highly effective: they provide various services related to data and act as a link between SMEs in the digital sector and other companies and organizations. At the European level, however, interconnection between these hubs is sorely lacking, which is why the idea of a unified network is so important.

The  project will foster collaboration and exchange between existing hubs and provide a solid foundation for a European data economy to meet the growing data needs of SMEs in the digital sector and start-ups that work with technologies such as artificial intelligence (AI). The focus will be on system interoperability and data sharing. The project is therefore an important step towards implementing the European Commission plan to strengthen Europe’s data economy and digital sovereignty.

How will you achieve these goals?

NC: The project focuses on two areas: supply and demand. On the supply side, we’ll be working on the catalogue of services and datasets and on providing training opportunities in big data and AI. On the demand side, we’ll be carrying out experiments, with three open call sessions, along with an extensive awareness program aimed at getting hundreds of companies and organizations involved and encouraging them to innovate with data.

EuHubs4data offers a catalogue of services for SMEs, start-ups and web companies. Could you give us some concrete examples of such services?

NC: The goal is to propose a single catalogue presenting the various services offered by project partners and their respective ecosystems. For example, TeraLab could provide access to its data sharing platform, while a second partner could offer access to datasets, and a third could provide data analysis tools or training opportunities. The companies will benefit from a comprehensive catalogue and may in turn offer their customers innovative services.

12 digital innovation hubs located in 9 European countries are partners in this project. How will this federation be structured?

NC: The structuring of this federation will be specified over the course of the project. The consortium is headed by the Instituto Tecnológico de Informática in Valencia, Spain and includes DIHs and major European players in the field of big data – such as the Big Data Value Association, in which IMT is a member, and the International Data Spaces Association, which is at the center of GAIA-X and includes IMT as the French representative. A number of initiatives focus on structuring and expanding this ecosystem. The structure has to be flexible enough to incorporate new members, whether over the course of the project or in the distant future.

What will TeraLab’s specific role be?

NC: TeraLab’s role in the project is threefold. First, it is responsible for the work package in charge of establishing the catalogue of services, the central focus of the project. Second, TeraLab will provide its big data and AI platform along with its expertise in securing data. And third, as a DIH, TeraLab will accompany experiments and open calls, which will use the catalogue of services and datasets.  

Read more on I’MTech | Artificial Intelligence: TeraLab becomes a European digital innovation hub

What are some important steps coming up for the project?

NC: The open calls! The first will be launched in December 2020; that means that the first iteration of the catalogue should be ready at that time. The experiments will begin in spring 2021. TeraLab will follow them very closely and accompany several participating companies, to better understand their needs in terms of services, data and the use of the catalogue, in order to improve its use.

Learn more about the EUHubs4Data project :

Interview by Véronique Charlet