Facebook

Facebook: a small update causes major disruption

Hervé Debar, Télécom SudParis – Institut Mines-Télécom

Late on October 4, many users of Facebook, Instagram and WhatsApp were unable to access their accounts. All of these platforms belong to the company Facebook and were all affected by the same type of error: an accidental and erroneous update to the routing information for Facebook’s servers.

The internet employs various different types of technology, two of which were involved in yesterday’s incident: BGP (border gateway protocol) and DNS (domain name system).

In order to communicate, each machine must have an IP address. Online communication involves linking two IP addresses together. The contents of each communication are broken down into packets, which are exchanged by the network between a source and a destination.

How BGP (border gateway protocol) works

The internet is comprised of dozens of “autonomous systems”, or AS, some very large, and others very small. Some AS are interconnected via exchange points, enabling them to exchange data. Each of these systems is comprised of a network of routers, which are connected using either optical or electrical communication links. Communication online circulates using these links, with routers responsible for transferring communications between links in accordance with routing rules. Each AS is connected to at least one other AS, and often several at once.

When a user connects their machine to the internet, they generally do so via an internet service provider or ISP. These ISPs are themselves “autonomous systems”, with address ranges which they allocate to each of their clients’ machines. Each router receiving a packet will analyse both the source and the destination address before deciding to transfer the packet to the next link, following their routing rules.

In order to populate these routing rules, each autonomous system shares information with other autonomous systems describing how to associate a range of addresses in their possession with an autonomous system path. This is done step by step through the use of the BGP or border gateway protocol, ensuring each router has the information it needs to transfer a packet.

DNS (domain name system)

The domain name system was devised in response to concerns surrounding the lack of transparency with IP addresses for end users. For available servers on the internet, this links “facebook.com” with the IP address “157.240.196.35”.

Each holder of a domain name sets up (or delegates) a DNS server, which links domain names to IP addresses. They are considered to be the most reliable source (or authority) for DNS information, but are also often the first cause of an outage – if the machine is unable to resolve a name (i.e. to connect the name requested by the user to an address), then the end user will be sent an error message.

Each major internet operator – not just Facebook, but also Google, Netflix, Orange, OVH, etc. – has one or more autonomous systems and coordinates the respective BGP in conjunction with their peers. They also each have one or more DNS servers, which act as an authority over their domains.

The outage

Towards the end of the morning of October 4, Facebook made a modification to its BGP configuration which it then shared with the autonomous systems it is connected to. This modification resulted in all of the routes leading to Facebook disappearing, across the entire internet.

Ongoing communications with Facebook’s servers were interrupted as a result, as the deletion of the routes spread from one autonomous system to the next, since the routers were no longer able to transfer packets.

The most visible consequence for users was an interruption to the DNS and an error message, followed by the DNS servers of ISPs no longer being able to contact the Facebook authoritative server as a result of the BGP error.

This outage also caused major disruption on Facebook’s end as it rendered remote access and, therefore, teleworking, impossible. Because they had been using the same tools for communication, Facebook employees found themselves unable to communicate with each other, and so repairs had to be carried out at their data centres. With building security also online, access proved more complex than first thought.

Finally, with the domain name “facebook.com” no longer referenced, it was identified as free by a number of specialist sites for the duration of the outage, and was even put up for auction.

Impact on users

Facebook users were unable to access any information for the duration of the outage. Facebook has become vitally important for many communities of users, with both professionals and students using it to communicate via private groups. During the outage, these users were unable to continue working as normal.

Facebook is also an identity provider for many online services, enabling “single sign-on”, which involves users reusing their Facebook accounts in order to access services offered by other platforms. Unable to access Facebook, users were forced to use other login details (which they may have forgotten) in order to gain access.

Throughout the outage, users continued to request access to Facebook, leading to an increase in the number of DNS requests made online and a temporary but very much visible overload of DNS activity worldwide.

This outage demonstrated the critical role played by online services in our daily lives, while also illustrating just how fragile these services still are and how difficult it can be to control them. As a consequence, we must now look for these services to be operated with the same level of professionalism and care as other critical services.

Banking, for example, now takes place almost entirely online. A breakdown like the one that affected Facebook is less likely to happen to a bank given the standards and regulations in place for banking, such as the Directive On Network And Service Securitythe General Data Protection Regulation or PCI-DSS.

In contrast, Facebook writes its own rules and is partially able to evade regulations such as the GDPR. Introducing service obligations for these major platforms could improve service quality. It is worth pointing out that no bank operates a network as impressive as Facebook’s infrastructure, the size of which exacerbates any operating errors.

More generally, after several years of research and standardisation, safety mechanisms for BGP and DNS are now being deployed, the aim being to prevent attacks which could have a similar impact. The deployment of these security mechanisms will need to be accelerated in order to make the internet more reliable.

Hervé Debar, Director of Research and PhDs, Deputy director, Télécom SudParis – Institut Mines-Télécom

This article has been republished from The Conversation under a Creative Commons licence. Read the original article.

3D printing, a revolution for the construction industry?

Estelle Hynek, IMT Nord Europe – Institut Mines-Télécom

A two-story office building was “printed” in Dubai in 2019, becoming the largest 3D-printed building in the world by surface area: 640 square meters. In France, XtreeE plans to build five homes for rent by the end of 2021 as part of the Viliaprint project. Constructions 3D, with whom I am collaborating for my thesis, printed the walls of the pavilion for its future headquarters in only 28 hours.

Today, it is possible to print buildings. Thanks to its speed and the variety of architectural forms that it is capable of producing, 3D printing enables us to envisage a more economical and environmentally friendly construction sector.

3D printing consists in reproducing an object modeled on a computer by superimposing layers of material. Also known as “additive manufacturing”, this technique is developing worldwide in all fields, from plastics to medicine, and from food to construction.

For the 3D printing of buildings, the mortar – composed of cement, water and sand – flows through a nozzle connected to a pump via a hose. The sizes and types of printers vary from one manufacturer to another. The “Cartesian” printer (up/down, left/right, front/back) is one type, which is usually installed in a cage system on which the size of the printed elements is totally dependent. Another type of printer, such as the “maxi printer”, is equipped with a robotic arm and can be moved to any construction site for the direct in situ printing of different structural components in a wider range of object sizes.

L’attribut alt de cette image est vide, son nom de fichier est file-20210818-25-18klydg.jpg.
Pavilion printed by Constructions 3D in Bruay-sur-l’Escaut. Constructions 3D, provided by the author

Today, concrete 3D printing specialists are operating all over the world, including COBOD in Denmark, Apis Cor in Russia, XtreeE in France and Sika in Switzerland. All these companies share a common goal: promoting the widespread adoption of additive manufacturing for the construction of buildings.

From the laboratory to full scale

3D printing requires mortars with very specific characteristics that enable them to undergo rapid changes.

In fact, these materials are complex and their characterization is still under development: the mortars must be sufficiently fluid to be “pumpable” without clogging the pipe, and sufficiently “extrudable” to emerge from the printing nozzle without blocking it. Once deposited in the form of a bead, the behavior of the mortar must change very quickly to ensure that it can support its own weight as well as the weight of the layers that will be superimposed on it. No spreading or “structural buckling” of the material is permitted, as it could destroy the object. For example, a simple square shape is susceptible to buckling, which could cause the object to collapse, because there is no material to provide lateral support for the structure’s walls. Shapes composed of spirals and curves increase the stability of the object and thus reduce the risk of buckling.

These four criteria (pumpability, extrudability, constructability and aesthetics) define the specifications for cement-based 3D-printing “inks”. The method used to apply the mortar must not be detrimental to the service-related characteristics of the object such as mechanical strength or properties related to the durability of the mortar in question. Consequently, the printing system, compared to traditional mortar application methods, must not alter the performance of the material in terms of both its strength (under bending and compression) and its longevity.

In addition, the particle size and overall composition of the mortar must be adapted to the printing system. Some systems, such as that used for the “Maxi printer”, require all components of the mortar except for water to be in solid form. This means that the right additives (chemicals used to modify the behavior of the material) must then be found. Full-scale printing tests require the use of very large amounts of material.

Initially, small-scale tests of the mortars – also called inks – are carried out in the laboratory in order to reduce the quantities of materials used. A silicone sealant gun can be used to simulate the printing and enable the validation of several criteria. Less subjective tests can then be carried out to measure the “constructable” nature of the inks. These include the “fall cone” test, which is used to observe changes in the behavior of the mortar over time, using a cone that is sunk into the material at regular intervals.

Once the mortars have been validated in the laboratory, they must then undergo full-scale testing to verify the pumpability of the material and other printability-related criteria.

L’attribut alt de cette image est vide, son nom de fichier est file-20210818-27-13hdzxe.jpg.
Mini printer. Estelle Hynek, provided by the author

It should be noted that there are as yet no French or European standards defining the specific performance criteria for printable mortars. In addition, 3D-printed objects are not authorized for use as load-bearing elements of a building. This would require certification, as was the case for the Viliaprint project.

Finding replacements for the usual ingredients of mortar for more environmentally friendly and economical inks

Printable mortars are currently mainly composed of cement, a material that is well known for its significant contribution to CO₂ emissions. The key to obtaining more environmentally friendly and economical inks is to produce cement-based inks with a lower proportion of “clinker” (the main component of cement, obtained by the calcination of limestone and clay), in order to limit the carbon impact of mortars and their cost.

With this in mind, IMT Nord-Europe is working on incorporating industrial by-products and mineral additives into these mortars. Examples include “limestone filler”, a very fine limestone powder; “blast furnace slag”, a co-product of the steel industry; metakaolin, a calcinated clay (kaolinite); fly ash, derived from biomass (or from the combustion of powdered coal in the boilers of thermal power plants); non-hazardous waste incineration (NHWI) bottom ash, the residue left after the incineration of non-hazardous waste, or crushed and ground bricks. All of these materials have been used in order to partially or completely replace the binder, i.e. cement, in cement-based inks for 3D printing.

Substitute materials are also being considered for the granular “skeleton” structure of the mortar, usually composed of natural sand. For example, the European CIRMAP project is aiming to replace 100% of natural sand with recycled sand, usually made from crushed recycled concrete obtained from the deconstruction of buildings.

Numerous difficulties are associated with the substitution of the binder and granular skeleton: mineral additions can make the mortar more or less fluid than usual, which will impact the extrudable and constructable characteristics of the ink, and the mechanical strength under bending and/or compression may also be significantly affected depending on the nature of the material used and the cement component substitution rate.

Although 3D printing raises many issues, this new technology enables the creation of bold architectural statements and should reduce the risks present on today’s construction sites.

Estelle Hynek, PhD student in civil engineering at IMT Nord Europe – Institut Mines-Télécom

This article has been republished from The Conversation under a Creative Commons license. Read the original article (in French).

web browsing

How our Web browsing has changed in 30 years

Victor Charpenay, Mines Saint-Étienne – Institut Mines-Télécom

On August 5, 1991, a few months before I was born, Tim Berners-Lee unveiled his invention, called the “World Wide Web”, to the public and encouraged anyone who wanted to discover it to download the world’s very first prototype Web “browser”. This means that the Web as a public entity is now thirty years old.

Tim Berners-Lee extolled the simplicity with which the World Wide Web could be used to access any information using a single program: his browser. Thanks to hypertext links (now abbreviated to hyperlinks), navigation from one page to another was just a click away.

However, the principle, which was still a research topic at that time, seems to have been undermined over time. Thirty years later, the nature of our web browsing has changed: we are visiting fewer websites but spending more time on each individual site.

Hypertext in the past: exploration

One of the first scientific studies of our browsing behavior was conducted in 1998 and made a strong assumption: that hypertext browsing was mainly used to search for information on websites – in short, to explore the tree structure of websites by clicking. Search engines remained relatively inefficient, and Google Inc. had just been registered as a company. As recently as 2006 (according to another study published during the following year), it was found that search engines were only used to launch one in six browsing sessions, each of which then required an average of a dozen clicks.

L’attribut alt de cette image est vide, son nom de fichier est file-20210906-17-xeytzq.jpg.
Jade boat, China. Metropolitan Museum of Art, archive.org

Today, like most Internet users, your first instinct will doubtless be to “Google” what you are looking for, bypassing the (sometimes tedious) click-by-click search process. The first result of your search will often be the right one. Sometimes, Google will even display the information you are looking for directly on the results page, which means that there will be no more clicks and therefore no more need for hypertext browsing.

To measure this decline of hypertext from 1998 to today, I conducted my own (modest) analysis of browsing behavior, based on the browsing history of eight people over a two-month period (April-May 2021), who sent me their histories voluntarily (no code was hidden in their web pages, in contrast to the practices of other browsing analysis algorithms), and the names of the visited web sites were anonymized (www.facebook.com became *.com). Summarizing the recurrent patterns that emerged from these browsing histories shows not only the importance of search engines, but also the concentration of our browsing on a small number of sites.

Hypertext today: the cruise analogy

Not everyone uses the Web with the same intensity. Some of the histories analyzed came from people who spend the vast majority of their time in front of the screen (me, for example). These histories contain between 200 and 400 clicks per day, or one every 2-3 minutes for a 12-hour day. In comparison, people who use their browser for personal use only perform an average of 35 clicks per day. Based on a daily average of 2.5 hours of browsing, an Internet user clicks once every 4 minutes.

What is the breakdown of these clicks during a browsing session? One statistic seems to illustrate the persistence of hypertext in our habits: three quarters of the websites we visit are accessed by a single click on a hyperlink. More precisely, on average, only 23% of websites are “source” sites, originating from the home page, a bookmark or a browser suggestion.

However, the dynamics change when we analyze the number of page views per website. Indeed, most of the pages visited come from the same sites. On average, 83% of clicks take place within the same site. This figure remains relatively stable over the eight histories analyzed: the minimum is 73%, the maximum 89%. We typically jump from one Facebook page to another, or from one YouTube video to another.

There is therefore a dichotomy between “main” sites, on which we linger, and “secondary” sites, which we consult occasionally. There are very few main sites: ten at the most, which is barely 2% of all the websites a person visits. Most people in the analysis have only two main sites (perhaps Google and YouTube, according to the statistics of the most visited websites in France).

On this basis, we can paint a portrait of a typical hypertext browsing session, thirty years after the widespread adoption of this principle. A browsing session typically begins with a search engine, from which a multitude of websites can be accessed. We visit most of these sites once before leaving our search engine. We always visit the handful of main sites in our browsing session via our search engine, but once on a site, we carry out numerous activities on it before ending the session.

The diagram below summarizes the portrait I have just painted. The websites that initiate a browsing session are in yellow, the others in blue. By analogy with the exploratory browsing of the 90s, today’s browsing is more like a slow cruise on a select few platforms, most likely social platforms like YouTube and Facebook.

L’attribut alt de cette image est vide, son nom de fichier est file-20210831-23-1jlvak1.png.
A simplified graph of browsing behavior; the nodes of the graph represent a website (yellow for a site initiating a browsing session, blue for other sites) and the lines represent one or more clicks from one site toward another (the thickness of the lines is proportional to the number of clicks). Victor Charpenay, provided by the author.

The phenomenon that restricts our browsing to a handful of websites is not unique to the web. This is one of the many examples of Pareto’s law, which originally stated that the majority of the wealth produced was owned by a minority of individuals. This statistical law crops up in many socio-economic case studies.

However, what is interesting here is that this concentration phenomenon is intensifying. The 1998 study gave an average of 3 to 8 pages visited per website. The 2006 survey reported 3.4 page visits per site. The average I obtained in 2021 was 11 page visits per site.

Equip your navigator with a “porthole”

The principle of hypertext browsing is nowadays widely abused by the big Web platforms. The majority of hyperlinks between websites – as opposed to self-referencing links (those directed by websites back to themselves, shown in blue on the diagram above) – are no longer used by humans for browsing but by machines for automatically installing fragments of spyware code on our browsers.

There is a small community of researchers who still see the value of hypermedia on the web, especially when users are no longer humans, but bots or “autonomous agents” (which are programmed to explore the Web rather than remain on a single website). Other initiatives, like Solid – Tim Berners-Lee’s new project – are trying to find ways to give Internet users (humans or bots) more control over their browsing, as in the past.

As an individual, you can monitor your own web browsing in order to identify habits (and possibly change them). The Web Navigation Window browser extension, available online for Chrome and Firefox, can be used for this purpose. If you wish, you could also contribute to my analysis by submitting your own history (with anonymized site names) via this extension. To do so, just follow the corresponding hyperlink.

Victor Charpenay, Lecturer and researcher at the Laboratory of Informatics, Modeling and Optimization of Systems (LIMOS), Mines Saint-Étienne – Institut Mines-Télécom

This article has been republished from The Conversation under a Creative Commons license. Read the original article (in French).

Gouvernance des données

Data governance: trust it (or not?)

The original version of this article (in French) was published in the quarterly newsletter no. 20 (March 2021) of the Values and Policies of Personal Information (VP-IP) Chair.

On 25 November 2020, the European Commission published its proposal for the European data governance regulation, the Data Governance Act (DGA) which aims to “unlock the economic and societal potential of data and technologies like artificial intelligence “. The proposed measures seek to facilitate access to and use of an ever-increasing volume of data. As such, the text seeks to contribute to the movement of data between member states of the European Union (as well as with States located outside the EU) by promoting the development of “trustworthy” systems for sharing data within and across sectors.

Part of a European strategy for data

This proposal is the first of a set of measures announced as part of the European strategy for data presented by the European Commission in February 2020. It is intended to dovetail with two other proposed regulations dated on 15 December 2020: the Digital Services Act (which aims to regulate the provision of online services, while maintaining the principle of the prohibition of a surveillance obligation) and the Digital Market Act (which organizes the fight against unfair practices by big platforms against companies who offer services through their platforms). A legislative proposal for the European Health Data Space is expected for the end of 2021 and possibly a “data law.”

The European Commission also plans to create nine shared European data spaces in strategic economic sectors and public interest areas, from the manufacturing industry to energy, or mobility, health, financial data and green deal data. The first challenge to overcome in this new data ecosystem will be to transcend national self-interests and those of the market.  

The Data Governance Act proposal does not therefore regulate online services, content or market access conditions: it organizes “data governance,” meaning the conditions for sharing data, with the market implicitly presumed to be the paradigm for sharing. This is shown in particular by an analysis carried out through the lens of trust (which could be confirmed in many other ways).

The central role of trust

Trust plays a central and strategic role in all of this legislation since the DGA “aims to foster the availability of data for use, by increasing trust in data intermediaries and by strengthening data-sharing mechanisms across the EU.” “Increasing trust”, “building trust”, ensuring a “higher level of trust”, “creating trust”, “taking advantage of a trustworthy environment”, “bringing trust” – these expressions appearing throughout the text point to its fundamental aim.

However, despite the fact that the proposal takes great care to define the essential terms on which it is based (“data“, “reuse”, “non-personal data”, “data holder”, “data user”, “data altruism” etc.), the term “trust,” along with the conditions for ensuring it, are exempt from such semantic clarification – even though “trust” is mentioned some fifteen times.

As in the past with the concept of dignity, which was part of the sweeping declarations of rights and freedoms in the aftermath of the Second World War but was nevertheless undefined –  despite the fact that it is the cornerstone of all bioethical texts, the concept of trust is never made explicit. Lawmakers, and those to whom the obligations established by the legal texts are addressed, are expected to know enough about what dignity and trust are to implicitly share the same understanding. As with the notion of time for Saint Augustine, everyone is supposed to understand what it is, even though they are unable to explain it to someone else.

While some see this as allowing for a certain degree of “flexibility” to adapt the concept of trust to a wide range of situations and a changing society, like the notion of privacy, others see this vagueness – whether intentional or not – at best, as a lack of necessary precision, and at worst, as an undeclared intention.

The implicit understanding of trust

In absolute terms, it is not very difficult to understand the concept of trust underlying the DGA (like in the Digital Services Act in which the European Commission proposes, among other things, a new mysterious category of “trusted flaggers“). To make it explicit, the main objectives of the text must simply be examined more closely.

The DGA represents an essential step for open data. The aim is clearly stated: to set out the conditions for the development of the digital economy by creating a single data market. The goal therefore focuses on introducing a fifth freedom: the free movement of data, after the free movement of goods, services, capital and people.  

While the GDPR created a framework for personal data protection, the DGA proposal intends to facilitate its exchange, in compliance with all the rules set out by the GDPR (in particular data subjects’ rights and consent when appropriate).

The scope of the proposal is broad.

The term data is used to refer to both personal data and non-personal data, whether generated by public bodies, companies or citizens. As a result, interaction with the personal data legislation is particularly significant. Moreover, the DGA proposal is guided by principles for data management and re-use that were developed for research data. The “FAIR” principles for data stipulate that this data must be easy to find, accessible, interoperable and re-usable, while providing for exceptions that are not listed and unspecified at this time.

To ensure trust in the sharing of this data, the category of “data intermediary” is created, which is the precise focus of all the political and legal discourse on trust. In the new “data spaces” which will be created (meaning beyond those designated by the European Commission), data sharing service providers will play a strategic role, since they are the ones who will ensure interconnections between data holders/producers and data users.

The “trust” which the text seeks to increase works on three levels:

  1. Trust among data producers (companies, public bodies data subjects) to share their data
  2.  Trust among data users regarding the quality of this data
  3. Trust among trustworthy intermediaries in the various data spaces

Data intermediaries

This latter group emerges as organizers for data exchange between companies (B2B) or between individuals and companies (C2B). They are the facilitators of the single data market. Without them, it is not possible to create it from a technical viewpoint or make it work. This intermediary position allows them to have access to the data they make available; it must be ensured that they are impartial.

The DGA proposal differentiates between two types of intermediaries: “data sharing service providers,” meaning those who work “against remuneration in any form”  with regard to both personal and non-personal data (Chapter III) and “data altruism organisations” who act “without seeking a reward…for purposes of general interest such as scientific research or improving public services” (Chapter VI).

For the first category, the traditional principle of neutrality is applied.

To ensure this neutrality, which “is a key element to bring trust, it is therefore necessary that data sharing service providers act only as intermediaries in the transactions, and do not use the data exchanged for any other purpose”. This is why data sharing services must be set up as legal entities that are separate from other activities carried out by the service provider in order to avoid conflicts of interest. In the division of digital labor, intermediation becomes a specialization in its own right. To create a single market, we fragment the technical bodies that make it possible, and establish a legal framework for their activities.

In this light, the real meaning of “trust” is “security” – security for data storage and transmission, nothing more, nothing less. Personal data security is ensured by the GDPR; the security of the market here relates to that of the intermediaries (meaning their trustworthiness, which must be legally guaranteed) and the transactions they oversee, which embody the effective functioning of the market.

From the perspective of a philosophical theory of trust, all of the provisions outlined in the DGA are therefore meant to act on the motivation of the various stakeholders, so that they feel a high enough level of trust to share data. The hope is that a secure legal and technical environment will allow them to transition from simply trusting in an abstract way to having trust in data sharing in a concrete, unequivocal way.

It should be noted, however, that when there is a conflict of values between economic or entrepreneurial freedom and the obligations intended to create conditions of trust, the market wins. 

In the impact assessment carried out for the DA proposal, the Commission declared that it would choose neither a high-intensity regulatory intervention option (compulsory certification for sharing services or compulsory authorization for altruism organizations), nor a low-intensity regulatory intervention option (optional labeling for sharing services or voluntary certification for altruism organizations). It opted instead for a solution it describes as “alternative” but which is in reality very low-intensity (lower even, for example, than optional labeling in terms of guarantees of trust). In the end, a notification obligation with ex post monitoring of compliance for sharing services was chosen, along with the simple possibility of registering as an “organisation engaging in data altruism.”

It is rather surprising that the strategic option selected includes so few safeguards to ensure the security and trust championed so frequently by the European Commission champion in its official communication.

An intention based on European “values”

Margrethe Vestager, Executive Vice President of the European Commission strongly affirmed this: “We want to give business and citizens the tools to stay in control of data. And to build trust that data is handled in line with European values and fundamental rights.”

But in reality, the text’s entire reasoning shows that the values underlying the DGA are ultimately those of the market – a market that admittedly respects fundamental European values, but that must entirely shape the European data governance model. This offers a position to take on the data processing business model used by the major tech platforms. These platforms, whether developed in the Silicon Valley ecosystem or another part of the world with a desire to dominate, have continued to gain disproportionate power in light of their business model. Their modus operandi is inherently based on the continuous extraction and complete control of staggering quantities of data.

The text is thus based on a set of implicit reductions that are presented as indisputable policy choices. The guiding principle, trust, is equated with security, meaning security of transactions. Likewise, the European values as upheld in Article 2 of the Treaty on European Union, which do not mention the market, are implicitly related to those that make the market work. Lastly, governance, a term that has a strong democratic basis in principle, which gives the DGA its title, is equated only with the principles of fair market-based sharing, with the purported aim, among other things, to feed the insatiable appetite of “artificial intelligence”.

As for “data altruism,” it is addressed in terms of savings in transaction costs (in this case, costs related to obtaining consent), and the fact that altruism can be carried out “without asking for remuneration” does not change the market paradigm: a market exchange is a market exchange, even when it’s free.

By choosing a particular model of governance implicitly presented as self-evident, the Commission  fails to recognize other possible models that could be adopted to oversee the movement of data.  Just a few examples that could be explored and which highlight the many overlooked aspects of the text, are:

  1.  The creation of a public European public data service
  2. Interconnecting the public services of each European state (based on the eIDAS or Schengen Information System (SIS) model; see also France’s public data service, which presently applies to data created as part of public services by public bodies)
  3. An alternative to a public service: public officials, like notaries or bailiffs, acting under powers delegated by a level of public authority
  4. A market-based alternative: pooling of private and/or public data, initiated and built by private companies.

What kind of data governance for what kind of society?

This text, however, highlights an interesting concept in the age of the “reign of data”: sharing. While data is trivially understood as being the black gold of the 21st century, the comparison overlooks an unprecedented and essential aspect: unlike water, oil or rare metals, which are finite resources, data is an infinite resource, constantly being created and ever-expanding.

How should data be pooled in order to be shared?

Should data from the public sector be made available in order to transfer its value creation to the private sector? Or should public and private data be pooled to move toward a new sharing equation? Will we see the emergence of hybrid systems of values that are evenly distributed or a pooling of values by individuals and companies? Will we see the appearance of a “private data commons”? And what control mechanisms will it include?

Will individuals or companies be motivated to share their data? This would call for quite a radical change in economic culture.

The stakes clearly transcend the simple technical and legal questions of data governance. Since the conditions are those of an infinite production of data, these questions make us rethink the traditional economic model.

It is truly a new model of society that must be discussed. Sharing and trust are good candidates for rethinking the society to come, as long as they are not reduced solely to a market rationale.

The text, in its current form, certainly offers points to consider, taking into account our changing societies and digital practices. The terms, however, while attesting to worthwhile efforts for categorization adapted to these practices, require further attention and conceptual and operational precision.   

While there is undoubtedly a risk of systematic commodification of data, including personal data, despite the manifest wish for sharing, it must also be recognized that the text includes possible advances.  The terms of this collaborative writing  are up to us – provided, of course, that all of the stakeholders are consulted, including citizens, subjects and producers of this data.


Claire Levallois-Barth, lecturer in Law at Télécom Paris, coordinator of the VP-IP chair, co-founder of the VP-IP chair.

Mark Hunyadi, professor of moral and political philosophy at the Catholic University of Louvain (Belgium), member of the VP-IP chair.

Ivan Meseguer, European Affairs, Institut Mines-Télécom, co-founder of the VP-IP chair.

IMPETUS: towards improved urban safety and security

How can traffic and public transport be managed more effectively in a city, while controlling pollution, ensuring the safety of users and at the same time, taking into account ethical issues related to the use of data and mechanisms to ensure its protection? This is the challenge facing IMPETUS, a €9.3 million project receiving funding of €7.9 million from the Horizon 2020 programme of the European Union[1]. The two-year project launched in September 2020 will develop a tool to increase cities’ resilience to security-related events in public areas. An interview with Gilles Dusserre, a researcher at IMT Mines Alès, a partner in the project.

What was the overall context in which the IMPETUS project was developed?

Gilles Dusserre The IMPETUS project was the result of my encounter with Matthieu Branlat, the scientific coordinator of IMPETUS, who is a researcher at SINTEF (Norwegian Foundation for Scientific and Industrial Research) which supports research and development activities. Matthieu and I have been working together for many years. As part of the eNOTICE European project, he came to take part in a use case organized by IMT Mines Alès on health emergencies and the resilience of hospital organizations. Furthermore, IMPETUS is the concrete outcome of efforts made by research teams at Télécom SudParis and IMT Mines Alès for years to promote joint R&D opportunities between IMT schools.

What are the security issues in smart cities?

GD A smart city can be described as an interconnected urban network of sensors, such as cameras and environmental sensors; it offers a multitude of valuable big data. In addition to better managing traffic and public transport and controlling pollution, this data allows for better police surveillance, adequate crowd control. But these smart systems increase the risk of unethical use of personal data, in particular given the growing use of AI (artificial intelligence) combined with video surveillance networks. Moreover, they increase the attack surface for a city since several interconnected IoT (Internet of Things) and cloud systems control critical infrastructure such as transport, energy, water supply and hospitals (which play a central role in current problems). These two types of risks associated with new security technologies are taken very seriously by the project: a significant part of its activities is dedicated to the impact of the use of these technologies on operational, ethical and cybersecurity aspects. We have groups within the project and external actors overseeing ethical and data privacy issues. They work with project management to ensure that the solutions we develop and deploy adhere to ethical principles and data privacy regulations. Guidelines and other decision-making tools will also be developed for cities to help them identify and take into account the ethical and legal aspects related to the use of intelligent systems in security operations.

What is the goal of IMPETUS?

GD In order to respond to these increasing threats for smart cities, the IMPETUS project will develop an integrated toolbox that covers the entire physical and cybersecurity value chain. The tools will advance the state of the art in several key areas such as detection (social media, web-based threats), simulation and analysis (AI-based tests) and intervention (human-machine interface and eye tracking, optimization of the physical and cyber response based on AI). Although the toolbox will be tailored to the needs of smart city operators, many of the technological components and best practices will be transferable to other types of critical infrastructure.

What expertise are researchers from IMT schools contributing to the project?  

GD The work carried out by Hervé Debar‘s team at Télécom SudParis, in connection with researchers at IMT Mines Alès, resulted in the creation of the overall architecture of the IMPETUS platform, which will integrate the various modules of smart city as proposed in the project. Within this framework, the specification of the various system components, and the system as a whole, will be designed to meet the requirements of the final users (cities of Oslo and Padua), but also to be scalable to future needs.

What technological barriers must be overcome?

GD The architecture has to be modular, so that each individual component can be independently upgraded by the provider of the technology involved. The architecture also has to be integrated, which means that the various IMPETUS modules can exchange information, thereby providing significant added value compared to independent smart city and security solutions that work as silos.  

To provide greater flexibility and efficiency in terms of collecting, analyzing, storing and access to data, the IMPETUS platform architecture will combine IoT and cloud computing approaches. Such an approach will reduce the risks associated with an excessive centralization of large amounts of smart city data and is in line with the expected changes in communication infrastructure, which will be explored at a later date.  

This task will also develop a testing plan. The plan will include the prerequisites, the execution of tests, and the expected results. The acceptance criteria will be defined based on the priority and percentage of successful test cases. In close collaboration with the University of Nimes, IMT Mines Alès will work on innovative approach to environmental risks, in particular related to chemical or biological agents, and to hazard assessment processes.

The consortium includes 17 partners and 11 EU member states and associated countries. What are their respective roles?

GD The consortium was formed to bring together a group of 17 organizations that are complementary in terms of basic knowledge, technical skills, ability to create new knowledge, business experience and expertise. The consortium comprises a complementary group of academic institutions (universities) and research organizations, innovative SMEs, industry representatives, NGOs and final users.

The work is divided into a set of interdependent work packages. It involves interdisciplinary innovation activities that require a high level of collaboration. The overall strategy consists of an iterative exploration, an assessment and a validation, involving the final users at every step.

[1] This project receives funding from Horizon 2020, the European Union’s Framework Programme for Research and Innovation (H2020) under grant agreement N° 883286. Learn more about IMPETUS.

flux des conteneurs

DMS Logistics is optimizing inland container transportation

The inland container logistics chain suffers from low digitization, which limits organization and communication between the various parts of the chain. To overcome this problem, the start-up DMS Logistics, incubated at Mines Saint-Étienne, is developing a platform to optimize management of these flows of goods. It uses machine learning methods to automate the creation of schedules, reduce congestion at terminals and boost the competitiveness of ports and their logistics networks.

Ports’ ability to streamline the transfer of goods impacts their competitiveness in a sector where the competition is fierce. Yet, one of the major problems for this type of infrastructure is their permanent congestion. This is explained in part by the physical capacity to receive trucks at terminals, but is also due to the lack of anticipation in the exchange of containers with carriers. This results in costly slowdowns and detention charges for every delay. At the heart of the problem is a lack of communication between the various participants in the same supply chain: terminals, road carriers, container parks, ship-owners, freight forwarders etc.

To help overcome this problem, the start-up DMS Logistics seeks to bring together all of these participants through a platform to optimize and anticipate the inland flow of containers. “This is a major market with 800 million containers exchanged every year worldwide,” explains one of the three founders, Xavier Des Minières, a specialist in inland logistics. Using operational data from each participant in the chain, the start-up has successfully optimized the overall supply chain rather than an individual part of the chain. This software solution therefore achieves the goals of the French government’s strategic plan “France Logistics 2025” initiated in 2016 to make national logistics more efficient and attractive.

Digitizing companies that work with containers

The logistics sector is still little digitized. It is made up of many SMEs with very small profit margins who cannot afford to buy digital tools to manage their operations,” explains Xavier Des Minières. DMS Logistics is solving this problem by equipping these users digitally and adapting to their resources. However, the solution becomes more useful when it groups together all the parts of the supply chain. To do so, the company is targeting the terminals around which all the other inland transportation participants revolve.

DMS Logistics’ solution is a distributed cloud-based SaaS (Software as a Service) platform. It enables users to enter their operational data online: container movement, missions to accomplish or already carried out etc. For participants that have already gone digital, the service connects to their data through an API (Application Programming Interface) protocol. Since it was founded in 2020, the start-up has collected 700,000 container movements. This massive amount of data will feed its machine learning algorithms. “We’re automating three key time-consuming actions: managing operations schedules, making appointments at terminals and communication between partners,” says Xavier Des Minières.

Predicting flows based on data history

Why does this sector need to be automated? In the field, many participants in the chain respond to management difficulties in real time, using walkie-talkies or over the phone. They are constantly dealing with seemingly unforeseen difficulties. “However, we have shown that there is a lot of redundancy in the operational behavior of the various participants. The difficulties are therefore predictable and our algorithms make it possible to anticipate them,” explainsCyriac Azefack, a data scientist at DMS Logistics who holds a PhD in artificial intelligence.

The prediction is even more accurate when it cross-references data from the various participants. For example, carriers can optimize drivers’ schedules based on times for appointments offered by terminals to pick up goods. Furthermore, carriers’ behavior (history of their operations, inventory movement etc.) can be used to identify appropriate time slots for these appointments. Carriers can then access the terminal when it is convenient for them to do so and when it is not crowded. This seemingly simple organization was not possible before now.

An even higher level of optimization can be reached. “Still using carriers’ behavioral data, we identify the drivers and trucks that are most suited for a mission (local, long distance, etc.),” adds Taki-Eddine Korabi, a data scientist at DMS Logistics who holds a PhD in mathematics, computer science and automation. Ultimately, the overall optimization of an ecosystem results in better local management.

Towards the optimization of local logistics ecosystems

DMS Logistics’ solution is distributed in the Ivory Coast and in Marseille, where a team of 12 people are  based. “After 4 months of operations at our pilot facility, we can predict the arrival of trucks at a terminal with a reliability rate of 98% over a week,” explains Xavier Des Minières. For the terminal, this means 15% savings in resources. Moreover, when a port is efficient, it boosts the attractiveness of the entire region. The economic benefits are therefore wide-ranging.

Another key finding: optimizing flow at the terminals also helps the ports in their efforts toward ecological transition. More efficient organization means less unnecessary transportation, a reduction in traffic at ports, and therefore less local pollution. And air quality is improved. 

On the scientific side, research has only focused on optimizing container carriers’ operations since 2015 and on-the-ground information is still lacking. “We’re going to be starting a Cifre PhD with Mines Saint-Étienne which will rely on the use of data collected by our platform. That will allow us to explore this topic in an optimal way and offer bright prospects for research and the logistics business,” concludes Taki-Eddine Korabi.

By Anaïs Culot

Read on I’MTech: AlertSmartCity, Cook-e, Dastra, DMS, GoodFloow, JobRepublik, PlaceMeet and Spectronite supported by the “honor loan” scheme

MANIFESTS

Decision support tools for maritime accident management

The European MANIFESTS project, launched in January, is a two-year project bringing together a consortium of nine research institutions and public administrations with complementary expertise in managing maritime accidents. Funded by the European Commission, this project aims to improve responses to emergencies related to these accidents. An interview with Laurent Aprin, a researcher at IMT Mines Alès, a project partner.

Could you describe the broader context of the MANIFESTS project?

Laurent Aprin –The MANIFESTS project (Managing Risks and Impacts From Evaporating and Gaseous Substances to Population Safety) is a follow-up to the European HNS-MS project funded from 2015 to 2017 by the European Commission’s Directorate General for European Civil Protection and Humanitarian Aid (DG-ECHO). The purpose of this project was to study and model the consequences of chemical spills in the ocean and determine the vulnerability of the environment, people and goods depending on the chemicals spilled. We wanted to continue our research by expanding the consortium and addressing questions submitted by the various stakeholders at the end-of-project meeting, in particular the consequences of evaporating substances that are likely to form toxic clouds, which are flammable, or even explosive.

What is the aim of the MANIFESTS project?

LA ­– Responding to maritime accidents can be especially challenging when they involve Hazardous and Noxious Substances (HNS) which act like gases or evaporators. Due to their potential to form toxic or combustible clouds, fact-based decisions are needed to protect the crew, responders, coastal communities and the environment. But when an accident is declared, key information for assessing risks for responders or emergency teams is not always available. Allowing a ship that presents a risk to dock in a place of refuge due to a lack of knowledge and data could have major implications for coastal communities. The aim of MANIFESTS is to respond to these uncertainties and improve response capacity with decision support tools and novel and innovative operational guidelines. How so? By facilitating access to knowledge and databases, all of which are hosted on a dedicated open source web platform accessible to planners and responders.

How will you achieve this goal?

LA – The MANIFESTS project is divided into four activities (workpackages, WP) supported by two cross-project activities, project management (WP1) and project communication (WP6). The technical work includes producing new data and knowledge on gases and evaporating substances that may be released during marine accidents. This information will be obtained by acquiring knowledge from the literature and research data (WP2). WP3 involves developing methods to assess and manage risks and testing response tools through computer-based and field trials. WP4 will focus on developing and improving tools for modeling HNS behavior and developing a MANIFESTS decision support system. This WP includes developing  new tools based on the previously described WPs and upgrading the models developed in the existing HNS-MS and MARINER projects (WP5).

L’attribut alt de cette image est vide, son nom de fichier est image.png.

What scientific expertise are IMT Mines Alès researchers bringing to this project?

LA – IMT Mines Alès[1] researchers are primarily involved in two WPs:

  • WP2: improving knowledge and data on gases and evaporating substances for which IMT Mines Alès is the coordinator. This task aims to characterize and theoretically and experimentally assess the behavior and impacts of HNS when they are released into the ocean, with a particular focus on the release of volatile substances that may lead to the formation of a potentially toxic, flammable and/or explosive gas cloud.
  • WP6: strategy for dissemination, exploitation and visibility, in particular to develop proof of concept (PoC) for a serious games to train emergency responders and planners involved in managing marine pollution events. Using an immersive scenario, this crisis simulation makes it possible to test the implementation of response plans, the response cell’s capacity to fulfill its missions (including adapting during a dynamically evolving scenario) and to make defensible decisions under demanding, realistic conditions.

Who are your partners for this project and how are you working together?

LA – The project consortium is coordinated by Cedre (France)[2], and includes 9 research institutions and public administrations from 6 countries (France, Belgium, UK, Norway, Spain, Portugal) with strong complementary expertise: ARMINES/IMT Mines Alès (France), Royal Belgium Institute of Natural Science (RBINS, Belgium), Instituto Tecnológico para el Control del Medio Marino de Galicia (INTECMAR, Spain), Centro tecnologico del mar/Fundacion CETMAR (Spain), Instituto superior tecnico (Portugal), Department of Health (UK), Meteorologisk Institutt (Norway) and the Federal Public Service for Public Health, Food Chain Safety and Environment (Belgium). They are involved in all the aspects of marine pollution addressed by the project: chemical analysis, pollution modeling, developing decision support tools, risk assessment and management, training and exercises, knowledge transfer. MANIFESTS will also benefit from collaboration with an advisory committee comprising 6 national maritime authorities who will be the primary end-users of the project results, including the French Navy, CEPPOL (Centre of Practical Expertise for Pollution Response) and customs for France.

What are the next big steps for the project?

LA – The MANIFESTS project was launched on 1 January 20201 and is set to run for two years. The first phase will involve an accident study and a literature review of the modeling of the behavior of evaporating substances in the ocean. The next steps will focus on creating experimental designs to characterize the  evaporation rate of substances and the consequences of explosions, programming consequence models (dispersion, fire and explosion) and conducting a large-scale trial in the Atlantic Ocean.


[1] The IMT Mines Alès team includes Laurent Aprin, Aurélia Bony-Dandrieux, Philippe Bouillet, Frédéric Heymes, Christian Lopez and Jérôme Tixier.

[2] Laura Cotte, engineer, and Stéphane Le Floch, Head of the Research Department at the Centre for Documentation, Research and Experimentation on Accidental Water Pollution (Cedre), are the initiators and coordinators of the project.

Interview by Véronique Charlet

Sobriété numérique, digital sobriety

What is digital sufficiency?

Digital consumption doubles every 5 years. This is due in particular to the growing number of digital devices and their increased use. This consumption also has an increasing impact on the environment. Digital sufficiency refers to finding the right balance for the use of digital technology in relation to the planet and its inhabitants. Fabrice Flipo, a researcher at Institut Mines-Télécom Business School and the author of the book “L’impératif de la sobriété numérique” (The Imperative of Digital Sufficiency) explains the issues relating to this sufficiency.

What observation is the concept of digital sufficiency based on?

Fabrice Flipo: On the observation of our increasing consumption of digital technology and its impacts on the environment, especially in terms of greenhouse gases. This impact is due to the growing use of digital tools and their manufacturing. Materials for digital tools depend on their extraction, which relies primarily on fossil fuels, and therefore carbon. The use of these tools is also increasingly energy-intensive.

The goal is to include digital technology in discussions currently underway in other sectors, such as energy or transportation. Until recently, digital technology has been left out of these debates. This is the end of the digital exception.

How can we calculate the environmental impacts of digital technology?

FF: The government’s roadmap for digital technology primarily addresses the manufacturing of digital tools, which it indicates accounts for 75% of its impacts. According to this roadmap, the solution is to extend the lifespan of digital tools and combat planned obsolescence. But that’s not enough, especially since digital devices have proliferated in all infrastructure and their use is increasingly costly in energy. The amount of data consumed doubles every 5 years or so and the carbon footprint of the industry has doubled in 15 years.  

It’s hard to compare figures about digital technology because they don’t all measure the same thing. For example, what should we count in order to measure internet consumption? The number of devices, the number of individual uses, the type of uses? So standardization work is needed.

A device such as a smartphone is used for many purposes. Consumption estimations are averages based on typical use scenarios. Another standardization issue is making indicators understandable for everyone. For example, what measurements should be taken into account to evaluate environmental impact?

What are the main energy-intensive uses of digital technology?

FF: Today, video is one of the uses that consumes the most energy. What matters is the size of the files and their being transmitted in computers and networks. Every time they are transmitted, energy is consumed. Video, especially high-resolution video, commands pixels to be switched on up to 60 times per second. The size of the files makes their transmission and processing very energy-intensive. This is the case for artificial intelligent programs that process images and video as well. Autonomous vehicles are also likely to use a lot of energy in the future, since they involve huge amounts of information. 

What are the mechanisms underlying the growth of digital technology?

FF: Big companies are investing heavily in this area. They use traditional marketing strategies: target an audience that is particularly receptive to arguments and able to pay, then gradually expand this audience and find new market opportunities. The widespread use of a device and a practice leads to a gradual phasing out of alternative physical methods. When digital technology starts to take hold in a certain area, it often ends up becoming a necessary part of our everyday lives, and is then hard to avoid. This is referred to as the “lock-in” effect. A device is first considered to be of little use, but then becomes indispensable. For example, the adoption of smartphones was largely facilitated by offers funded by charging other users, through the sale of SMS messages. This helped lower the market entry cost for the earliest adopters of smartphones and create economies of scale. Smartphones then became widespread. Now, it is hard to do without one.

How can we apply digital sufficiency to our lifestyles?

FF: Sufficiency is not simply a matter of “small acts”, but it cannot be enforced by a decree either. The idea is to bring social mindedness to our lifestyles, to regain power over the way we live. The balance of power is highly asymmetrical: on one side are the current or potential users who are scattered, and on the other are salespeople who tout only the advantages of their products and have extensive resources for research and for attracting customers. This skewed balance of power must be shifted. An important aspect is informing consumers’ choices. When we use digital devices today, we have no idea about how much energy we’re consuming or our environmental impact: we simply click. The aim is to make this information perceptible at every level, and to make it a public issue, something everyone’s concerned about. Collective intelligence must be called upon to change our lifestyles and reduce our use of digital technology, with help from laws if necessary.

For example, we could require manufacturers to obtain marketing authorization, as is required for medications. Before marketing a product or service (a new smartphone or 5G), the manufacturer or operator would have to provide figures for the social-ecological trajectory they seek to produce, through their investment strategy. This information would be widely disseminated and would allow consumers to understand what they are signing up for, collectively, when they choose 5G or a smartphone. That is what it means to be socially-minded: to realize that the isolated act of purchasing actually forms a system.

Today, this kind of analysis is carried out by certain associations or non-governmental organizations. For example, this is what The Shift Project does for free. The goal is therefore to transfer this responsibility and its cost to economic players who have far greater resources to put these kinds of analyses in place. Files including these analyses would then be submitted to impartial public organizations, who would decide whether or not a product or service may be marketed. The organizations that currently make such decisions are not impartial since they base their decisions on economic criteria and are stakeholders in the market that is seeking to expand.  

How can sufficiency be extended to a globalized digital market?  

FF: It works through a leverage effect: when a new regulation is established in one country, it helps give more weight to collectives that are dealing with the same topic in other countries. For example, when the electronic waste regulation was introduced, many institutions protested. But gradually, an increasing number of  countries have adopted this regulation.

Some argue that individual efforts suffice to improve the situation, while others think that the entire system must be changed through regulations. We must get away from such either-or reasoning and go beyond  opposing viewpoints in order to combine them. The two approaches are not exclusive and must be pursued simultaneously.

By Antonin Counillon

données de santé, health data

Speaking the language of health data to improve its use

The world of healthcare has extensive databases that are just waiting to be used. This is one of the issues Benjamin Dalmas, a data science researcher at Mines Saint-Étienne, is exploring in his work. His main objective is to understand the origin of this data to use it more effectively. As such, he is working with players from the public and private sectors for analysis and predictive purposes in order to improve management of health care institutions and our understanding of care pathways.

Research has made great strides in processing methods using machine learning. But what do we really know about the information that such methods use? Benjamin Dalmas is a health data science researcher at Mines Saint-Étienne. The central focus of his work is understanding health data, from its creation to its storage. What does this data include? Information such as the time of a patient’s arrival and discharge, exams carried out, practitioners consulted etc. This data is typically used for administrative and financial purposes.

Benjamin Dalmas’s research involves identifying and finding a straightforward way to present relevant information to respond to the concrete needs of public and private healthcare stakeholders. How can the number of beds in a hospital ward be optimized? Is it possible to predict the flow of arrivals in an emergency room? The responses to these problems rely on the same information: the medical administrative data produced every day by hospitals to monitor their patient pathways.

However, depending on the way in which it is considered, the same data can provide different information. It is the key witness to several investigations. So it must be approached in the right way to get answers.

Understanding data in order to prevent bias

Since it is primarily generated by humans, health data may be incorrect or biased. By focusing on its creation, researchers seek to identify the earliest potential bias. Benjamin Dalmas is working with Saint-Étienne University Hospital Center to study the codes assigned by the hospital upon a patient’s discharge. These codes summarize the reason for which the individual came to the hospital and received care. Doctors who specialize in this coding generate up to 16,000 different codes, a tedious task, for which the hospital wishes to seek assistance from a decision support tool to limit errors. “That means we must understand how humans code. By analyzing large quantities of data, we identify recurring errors and where they come from, and we can solve them,” explains Benjamin Dalmas. Greater accuracy means direct economic benefits for the institution.

However, this mass-produced data is increasingly used for other purposes than reimbursing hospitals. For the researcher, it is important to keep in mind that the data was not created for these new analyses. For example, he has noticed that such a straightforward notion as time may hide a number of different realities. When a consultation time is specified, it may mean one of three things: the actual time of consultation, the time at which the information was integrated in the file, or a time assigned by default. Since the primary objective of this information is administrative, the consultation time does not have a lot of importance. “If we don’t take the time to study this information, we run the risk of making biased recommendations that are not valid. Good tools cannot be created without understanding the data that fuels them,” says the researcher. Without this information, for example, a study focusing on whether or not social inequalities exist and taking into account how long a patient must wait before receiving care, could draw incorrect conclusions.

From reactive to proactive

So researchers must understand the data, but for what purpose? To predict, in order to anticipate, rather than just react. The development of predictive tools is the focus of a collaboration between Mines Saint-Étienne researchers and the company Move in Med. The goal is to anticipate the coordination of care pathways for breast cancer patients. In the case of chronic diseases such as cancer, the patient pathway is not limited to the hospital but also depends on a patient’s family, associations etc. To this end, the researchers are cross-referencing medical data with other social information (age, marital status, socio-economic background, place of residence etc.). Their aim is to identify unexpected factors, in the same way in which the weather, air quality and the even the occurrence of cultural events impact periods of peak arrival in emergency rooms. Predicting the complexity of a care pathway allows the company to allocate the appropriate resources and therefore ensure better care.

At the same time, the Auvergne Rhône-Alpes Regional Health Agency has been working with the researchers since May 2020 to predict hospital capacity strain levels for Covid arrivals. By reporting visual data based on systems of colors and arrows, the researchers provide information about changing dynamics and levels of hospital capacity strain in the region (Covid patient arrivals, positive PCR tests in the region, number of available beds etc.) In this work, researchers are tackling monitoring trends. How are these parameters evolving over time? At what threshold values do they alert the authorities that the situation is getting worse? To answer these questions, the research team provides maps and projections that the health agency can use to anticipate saturation and therefore prevent institutions from becoming overwhelmed, arrange for patients to be transferred etc.

Finding the right balance between volume and representativeness

The study of data raises questions about volume and representativeness, which depend on the user’s request. Proving without equipping oneself requires more data in order to fuel machine learning algorithms. “However, recovering public health data is quite an ordeal. We have to follow protocols that are highly regulated by the CNIL (the French Data Protection Authority) and ethics committees to justify the volume of data requested,” explains Benjamin Dalmas. On the other hand, a request for operational tools must be able to adapt to the on-the-ground realities faced by practitioners. That means working with limited amounts of information. It is a matter of finding the right balance.  

The Mines Saint-Étienne researchers are working with the Saint-Étienne-based company MJ INNOV on these aspects. The company offers an interactive facilitation tool to improve quality of life for individuals with cognitive impairments. Based on videos and sounds recorded during the stages of play, this research seeks to identify the impact of the practice on various subjects (nursing home residents, persons with Alzheimer’s disease etc.). In addition to using the information contained in residents’ files, this involves collecting a limited quantity of new information. “In an ideal world, we would have 360° images and perfect sound coverage. But in practice, to avoid disturbing the game, we have to plan on placing microphones under the table the patients are playing on, or fitting the camera directly within the inside of the table. Working with these constraints makes our analysis even more interesting,” says Benjamin Dalmas.

Measuring the impact of healthcare decision support tools

In the best-case scenario, researchers successfully create a decision support tool that is accessible online. But is the tool always adopted by the interested parties? “There are very few studies on the ergonomics of tools delivered to users and therefore on their impact and actual use,” says Benjamin Dalmas. Yet, this is a crucial question in his opinion, if we seek to improve data science research in such a concrete area of application as healthcare.  

To this end, an appropriate solution often means simplicity. First of all, by being easy-to-read: color schemes, shapes, arrows etc. Visualization and interpretation of data must be intuitive. Second, by promoting explainability of results. One of the drawbacks of machine learning is that the information provided seems to come from a black box. “Research efforts must now focus on the presentation of results, by enhancing communication between researchers and users,” concludes Benjamin Dalmas.

By Anaïs Culot

Read more on I’MTech: When AI helps predict a patient’s care pathway

réseaux optiques, optical networks

The virtualization of optical networks to support… 5G

Mobile networks are not entirely wireless. They also rely on a network of optical fibers, which connect antennas to the core network, among other things. With the arrival of 5G, optical networks must be able to keep up with the ramping up of the rest of the mobile network to ensure the promised quality of service. Two IMT Atlantique researchers are working on this issue, by making optical networks smarter and more flexible.  

In discussions of issues surrounding 5G, it is common to hear about the installation of a large number of antennas or the need for compatible devices. But we often overlook a crucial aspect of mobile networks: the fiber optic infrastructure on which they rely. Like previous generations, 5G relies on a wired connection in most cases. This technology is also used in the “last mile”. It therefore makes it possible to connect antennas to core network equipment, which is linked to most of the connected machines around the world. It can also connect various devices within the same antenna site.

In reality, 5G is even more dependent on this infrastructure than previous generations since the next-generation technology comes with new requirements related to new uses, such as the Internet of Things (IoT). For example, an application such as an autonomous car requires high availability, perfect reliability, very-low latency etc. All of these constraints weigh on the overall architecture, which includes fiber optics. If they cannot adapt to new demands within the last mile, the promises of 5G will be jeopardized. And new services (industry 4.0, connected cities, telesurgery etc.) will simply not be able to be provided in a reliable, secure way.

Facilitating network management through better interoperability

Today, optical networks are usually over-provizioned in relation to current average throughput needs. They are designed to be able to absorb 4G peak loads and are neither optimized, nor able to adapt intelligently to fluctuating demand. The new reality created by 5G, therefore represents both a threat for infrastructure in terms of its ability to respond to new challenges, and an opportunity to rethink its management.

Isabel Amigo and Luiz Anet Neto, telecommunications researchers at IMT Atlantique, are working with a team of researchers and PhD students to conduct research in this area. Their goal is to make optical networks smarter, more flexible and more independent from the proprietary systems imposed by vendors. A growing number of operators are moving in this direction. “At Orange, it used to be common to meet specialists in configuration syntaxes and equipment management for just one or two vendors,” explains Luiz Anet Neto, who worked for the French group for five years. “Now, teams are starting to set up a “translation layer” that turns the various configurations, which are specific to each vendor, into a common language that is more straightforward and abstract.”

This “translation layer”, on which he is working with other researchers, is called SDN, which stands for Software-Defined Networking. This model is already used in the wireless part of the network and involves offloading certain functions of network equipment. Traditionally, this equipment fulfills many missions: data processing (receiving and sending packets back to their destination), as well as a number of control tasks (routing protocols, transmission interfaces etc.) With SDN, equipment is relieved from these control tasks, which are centralized within an “orchestrator” entity that can control several devices at once.  

Read more on I’MTech: What is SDN?

There are many benefits to this approach. It provides an overview of the network, making it easier to manage, while making it possible to control all of the equipment, regardless of its vendor without having to know any proprietary language. “To understand the benefit of SDN, we can use an analogy between a personal computer and the SDN paradigm,” says Isabel Amigo. “Today, it would be unthinkable to have a computer that would only run applications that use a specific language. So, machines have an additional layer – the operating system – that is in charge of “translating” the various languages, as well as managing resources, memory, disks etc. SDN therefore aims to act like an operating system, but for the network.” Similarly, the goal is to be able to install applications that are able to work on any equipment, regardless of the hardware vendor. These applications could, for example, distribute the load based on demand.

Breaking our dependence on hardware vendors

SDN often goes hand in hand with another concept, inspired by virtualization in data centers: NFV (Network Functions Virtualization). Its principle: being able to execute any network functionality (not just control functions) on generic servers via software applications.”Usually, dedicated equipment is required for these functions,” says the IMT researcher. “For example, if you want to have a firewall, you need to buy a specific device from a vendor. With NFV, this is no longer necessary: you can implement the function on any server via an application.”

Read more on I’MTech: What is NFV?

As with SDN, the arrival of virtualization in optical networks promotes better interoperability. This makes it harder for vendors to require the use of their proprietary systems linked to their equipment. The market is also changing, by making more room for software developers. “But there is still a long way to go,” says Luiz Anet Neto. “Software providers can also try to make their customers dependent on their products, through closed systems. So operators have to remain vigilant and offer an increasing level of interoperability.”

Operators are working with the academic world precisely for this purpose. They would fully benefit from standardization, which would simplify the management of their optical networks. Laboratory tests carried out by IMT Atlantique in partnership with Orange provide them with technical information and areas to explore ahead of discussions with vendors and standardization bodies.

Sights are already set on 6G

For the research teams, there are many areas for development. First of all, the scientists are seeking to further demonstrate the value of their research, through testing focusing on a specific 5G service (up to now, the experiments have not applied to a specific application). Their aim is to establish recommendations for optical link dimensioning to connect mobile network equipment.

The goal is then to move towards smart optimization of optical networks. To provide an example of how findings by IMT Atlantique researchers may be applied, it is currently possible to add a “probe” that can determine if a path is overloaded and shift certain services to another link if necessary. The idea would then be to develop more in-depth mathematical modeling of the phenomena encountered, in order to automate incident resolution using artificial intelligence algorithms.

And it is already time for researchers to look toward the future of technology. “Mobile networks are upgraded at a dizzying pace; new generations come out every ten years,” says Luiz Anet Neto. “So we already have to be thinking about how to meet future requirements for 6G!

Bastien Contreras