space, René Garello, IMT Atlantique

Climate change as seen from space

René Garello, IMT Atlantique – Institut Mines-Télécom

[divider style=”normal” top=”20″ bottom=”20″]

[dropcap]T[/dropcap]he French National Centre for Space Research has recently presented two projects based on greenhouse gas emission monitoring (CO2 and methane) using satellite sensors. The satellites, which are to be launched after 2020, will supplement measures carried out in situ.

On a global scale, this is not the first such program to measure climate change from space: the European satellites from the Sentinel series have already been measuring a number of parameters since Sentinel-1A was launched on April 3, 2014 under the aegis of the European Space Agency. These satellites are part of the Copernicus Program (Global Earth Observation System of Systems), carried out on a global scale.

Since Sentinel-1A, the satellite’s successors 1B, 2A, 2B and 3A have been launched successfully. They are each equipped with sensors with various functions. For the first two satellites, these include a radar imaging system, for so-called “all weather” data acquisition, the radar wavelength being indifferent to cloudy conditions, whether at night or in the day. Infrared optical observation systems allow the second two satellites to monitor the temperature of ocean surfaces. Sentinel-3A also has four sensors installed for measuring radiometry, temperature, altimetry and the topography of surfaces (both ocean and land).

The launch of these satellites builds on the numerous space missions that are already in place on a European and global scale. The data they record and transmit grant researchers access to many parameters, showing us the planet’s “pulse”. These data partially concern the ocean (waves, wind, currents, temperatures, etc.) showing the evolution of large water masses. The ocean acts as an engine to the climate and even small variations are directly linked to changes in the atmosphere, the consequences of which can sometimes be dramatic (hurricanes). Data collected by sensors for continental surfaces concern variations in humidity and soil cover, whose consequences can also be significant (drought, deforestation, biodiversity, etc.).

[Incredible image from the eye of #hurricane #Jose taken on Saturday by the satellite #Sentinel2 Pic @anttilip]

Masses of data to process

Processing of data collected by satellites is carried out on several levels, ranging from research labs to more operational uses, not forgetting formatting activity done by the European Space Agency.

The scientific community is focusing increasingly on “essential variables” (physical, biological, chemical, etc.) as defined by groups working on climate change (in particular GCOS in the 1990s). They are attempting to define a measure or group of measures (the variable) that will contribute to the characterization of the climate in a critical way.

There are, of course, a considerable number of variables that are sufficiently precise to be made into indicators allowing us to confirm whether or not the UN’s objectives of sustainable development have been achieved.

space

The Boreal AJS 3 drone is used to take measurements at a very low altitude above the sea

 

The identification of these “essential variables” may be achieved after data processing, by combining this with data obtained by a multitude of other sensors, whether these are located on the Earth, under the sea or in the air. Technical progress (such as images with high spatial or temporal resolution) allows us to use increasingly precise measures.

The Sentinel program operates in multiple fields of application, including: environmental protection, urban management, spatial planning on a regional and local level, agriculture, forestry, fishing, healthcare, transport, sustainable development, civil protection and even tourism. Amongst all these concerns, climate change features at the center of the program’s attention.

The effort made by Europe has been considerable, representing an investment of over €4 billion between 2014 and 2020. However, the project also has very significant economic potential, particularly in terms of innovation and job creation: economic gains in the region of €30 million are expected between now and 2030.

How can we navigate these oceans of data?

Researchers, as well as key players in the socio-economic world, are constantly seeking more precise and comprehensive observations. However, with spatial observation coverage growing over the years, the mass of data obtained is becoming quite overwhelming.

Considering that a smartphone contains a memory of several gigabytes, spatial observation generates petabytes of data to be stored; and soon we may even be talking in exabytes, that is, in trillions of bytes. We therefore need to develop methods for navigating these oceans of data, whilst still keeping in mind that the information in question only represents a fraction of what is out there. Even with masses of data available, the number of essential variables is actually relatively small.

Identifying phenomena on the Earth’s surface

The most recent developments aim to pinpoint the best possible methods for identifying phenomena, using signals and images representing a particular area of the Earth. These phenomena include waves and currents on ocean surfaces, characterizing forests, humid, coastal or flooding areas, urban expansion in land areas, etc. All this information can help us to predict extreme phenomena (hurricanes), and manage post-disaster situations (earthquakes, tsunamis) or monitor biodiversity.

The next stage consists in making processing more automatic by developing algorithms that would allow computers to find the relevant variables in as many databases as possible. Intrinsic parameters and information of the highest level should then be added into this, such as physical models, human behavior and social networks.

This multidisciplinary approach constitutes an original trend that should allow us to qualify the notion of “climate change” more concretely, going beyond just measurements to be able to respond to the main people concerned – that is, all of us!

[divider style=”normal” top=”20″ bottom=”20″]

René Garello, Professor in Signal and Image Processing, “Image and Information Processing” department, IMT Atlantique – Institut Mines-Télécom

The original version of this article was published on The Conversation.

Young Scientist Prize, julien bras, biomaterial

Julien Bras: nature is his playground

Cellulose is one of the most abundant molecules in nature. At the nanoscale, its properties allow it to be used for promising applications in several fields. Julien Bras, a chemist at Grenoble INP, is working to further develop the use of this biomaterial. On November 21st he received the IMT-Académie des Sciences Young Scientist Prize at the official awards ceremony held in the Cupola of the Institut de France.

 

Why develop the use of biomass?

Julien Bras: When I was around 20, I realized that oil was a resource that would not last forever, and we would need to find new solutions. At that time, society was beginning to become aware of the problems of pollution in cities, especially due to plastics, as well as the dangers of global warming. So I thought we should propose something that would allow us to use the considerable renewable resources that nature has to offer. I therefore went to an engineering school in chemistry on developing the use of agro-resources, and then did a thesis for Ahlstrom on biomaterials.

What type of biomaterials do you work with?

JB: I work with just about all renewable materials, but especially with cellulose, which is a superstar in the world of natural materials. Nature produces hundreds of billions of tons of this polymer each year. For thousands of years, it has been used to make clothing, paper, etc. It is very well known and offers numerous possibilities. Although I work with all biomaterials, I am specialized in cellulose, and specifically its nanoscale properties.

What makes cellulose so interesting at the nanoscale?

JB: There are two major uses for cellulose at this scale. We can make cellulose nanocrystals, which have very interesting mechanical properties. They are much more solid than glass fibers, and can be used, for example, to reinforce plastics. And we can also design nanofibers, which are longer and more flexible than the crystals, which are easily tangled. This makes it possible to make very light, transparent systems covering a large surface. In one gram of nanofiber, the available surface area for exchange can reach up to two hundred square meters.

In which industry sectors do we find these forms of nanocellulose? 

JB: For now, few sectors really use them on a large scale. But it’s a material that is growing quickly. We do find nanocellulose in a few niche applications, such as composites, cosmetics, paper and packaging. Within my team, we are leading projects with a wide variety of sectors, to make car fenders, moisturizer, paint, and even bandages for the medical sector. This shows how interested manufacturers are in these biomaterials.

Speaking of applications, you helped create a start-up that uses cellulose

JB: Between 2009 and 2012, we participated in the European project Sunpap. The goal was to scale-up cellulose nanoparticles.  The thesis conducted as part of this project led us to file 2 patents for cellulose powders and functionalized nanocellulose. We then embarked on an adventure to create a start-up called Inofib. As one of the first companies in this field, the start-up significantly contributed to the industrial development of these biomaterials. Today, the company is focused on developing specific functionalization and applications for cellulose nanofibers. It is not seeking to compete with other major players in this field, who have since begun working on nanocellulose with European support, rather it seeks to differentiate itself through its expertise and the new functions it offers.

Can nanocellulose be used to design smart materials?  

JB: When I began my research, I was working separately on smart materials and nanocellulose. In particular, I worked with a manufacturer to develop conductive and transparent inks for high-quality materials, which led to the creation of another start-up: Poly-Ink. As things continued to progress, I decided to combine the two areas I was working on. Since 2013, I have been working on designing nanocellulose-based inks, which make it possible to create flexible, transparent and conductive layers to replace, for example, layers that are on the screens of mobile devices.

In the coming years, what areas of nanocellulose will you be focusing on?

JB: I would like to continue in this area of expertise by further advancing the solutions so that they can be produced. One of my current goals is to design them using green engineering processes, which limit the use of toxic solvents and are compatible with an environmental approach. Then I would like to increase their functions so that they can be used in more fields and with improved performance. I really want to show the interest of developing nanocellulose. I need to keep an open mind, so I can find new applications.

 

[divider style=”normal” top=”20″ bottom=”20″]

Biography of Julien Bras

Julien Bras, 39, has been an associate research professor at Grenoble INP- Pagora since 2006, as well as deputy director of LGP2 (Paper Process Engineering Lab). He was previously an engineer in a company in the paper industry in France, Italy and Finland. For over 15 years, Julien Bras has been focusing his research on developing a new generation of high-performance cellulosic biomaterials and developing the use of these agro-resources.

The industrial aspect of his research is not restricted to his collaborations as it also extends to the 9 registered patents and in particular, the founding of two spin-offs to which Julien Bras contributed. One is specialized in producing conductive and transparent inks for the electronics industry (Poly-Ink), and the other is specialized in producing nanocellulose for the paper, composite and chemical industries (Inofib).

[divider style=”normal” top=”20″ bottom=”20″]

Grand Prix IMT-Académie des sciences

Pierre Rouchon: research in control

Pierre Rouchon, a researcher at Mines ParisTech, is interested in the control of systems. Whether it be electromechanical systems, industrial facilities or quantum particles, he works to observe their behavior and optimize their performance. In the course of his work, he had the opportunity to work with the research group led by Serge Haroche, winner of the 2012 Nobel Prize in Physics. On November 21st, Pierre Rouchon was awarded the Grand Prix IMT-Académie des Sciences at an official ceremony held in the Cupola of the Institut de France.

 

From the beginning, you have focused your research on control theory. What is it?

Pierre Rouchon: My specialty is automation: how to optimize the control of dynamic systems. The easiest way to explain this is through an example. I worked on a problem that is well known in mobile robotics: how to parallel park a car hauling several trailers. If you have ever driven a car with a trailer in reverse, you know that you intuitively take the trajectory of the back of the trailer as the reference point. This is what we call a “flat output”; together, the car and trailer form a “flat system” for which simple algorithms exist for planning and tracking the trajectories. For this type of example, my research showed the value of controlling the trajectory of the last trailer, and developing efficient feedback algorithms based on that trajectory. This requires modelling — or, as we used to say, expression through equations — for the system and its movements.

What does this type of research achieve?

PR: It reduces the calculations that need to be made. A crane is another example of a flat system. By taking the trajectory of the load carried by the crane as the flat output, rather than the crane’s arm or hoisting winch, much fewer calculations are required. This leads to the development of more efficient software that assists operators in steering the crane, which speeds up their handling operations.

This seems very different from your current work in physics!

PR: What I’m interested in is the concept of feedback. When you measure and observe a classical system, you do so without disturbing it. You can therefore make a correction in real time using a feedback loop: this is the practical value of feedback, which makes systems easier to run and resistant to the disturbances they face. But in quantum systems, you disturb the system just by measuring it, and you therefore have an initial feedback due to the measurement. Moreover, the controller itself can be another quantum system. In quantum systems, the concept of feedback is therefore much more complex. I began studying this with one of my former students, Mazyar Mirrahimi, in the early 2000s. In fact, in 2017 he received the Prix Inria-Académie des Sciences Young Researcher Prize, and we still work together.

What feedback issue did you both work on in the beginning?

PR: When we started, we were taking Serge Haroche’s classes at the Collège de France. In 2008, we started working with his team on the experiment he was conducting. He was trying to manipulate and control photons that were trapped between two mirrors. He had developed very subtle “non-destructive” measures for counting the photons without destroying them. He earned a Nobel Prize in 2012 for his work. Along with Nina Amini, who was working on her thesis under our joint supervision, Mazyar and I first worked on the feedback loop that in 2011 made it possible to stabilize the number of photons around a setpoint, a whole number of several units.

Are you still interested in quantum feedback today?

PR: Yes, we are seeking to develop mathematical systematic methods for designing feedback loops with a hybrid structure: the first part of the controller is conventional, whereas the second part is a quantum system. To design these methods, we rely on superconducting quantum circuits. These are electronic circuits with quantum behavior at a low temperature, which are currently the object of much study. They are controlled and measured by radio frequency waves in the gigahertz range, which propagate along coaxial cables. We are currently working with experimenters to develop a quantum logic bit (logical qubit), which is one of the basic components of the famous quantum computer that everyone is working towards!

Is it important for you to have practical and experimental applications for your research?

PR:  Yes. It is important for me to have direct access to the problem I’m studying, to the objective reality shared by the largest possible audience. Working on concrete issues, with a real experiment or a real industrial process enables me to go beyond simulations and better understand the underlying mathematical methods. But it is a daunting task: in general, nothing goes according to plan. When I was working on my thesis, I worked with an oil refinery on controlling the quality of distillation columns. I arrived at the site with a floppy disk containing a Fortran code for a control algorithm tested through laboratory simulations. The engineers and operators on-site said, “Ok, let’s try it, at worst we’ll pour into the cavern”. The cavern was used to store the non-compliant portion of the product, to be reprocessed later. At first, the tests didn’t work, and it was awful and devastating for a theoretician. But when the feedback algorithm finally started working, what a joy and relief!

 

[divider style=”normal” top=”20″ bottom=”20″]

Biography of Pierre Rouchon

Pierre Rouchon

Pierre Rouchon, 57, is a professor at Mines ParisTech, and the director of the school’s Mathematics and Systems Department. He is a recognized specialist in Control Theory. He has made major scientific contributions to the three major themes of this discipline: flat systems in connection with trajectory planning, quantum systems and invariant asymptomatic observers.

His work has had, and continues to have, a significant impact on a fundamental level. It has been presented in 168 publications, cited 12,000 times, and been the subject of 9 patents. His work has been further reinforced by industrial collaborations, through which concrete and original solutions have been created. Examples include Schneider Electric’s order for electric engines, developing cryogenic distillation of air for Air Liquide and regulating diesel engines to reduce fine particle emissions with IFP and PSA.

[divider style=”normal” top=”20″ bottom=”20″]

 

optical communications

Sébastien Bigo: setting high-speed records

Driven by his desire to take the performance of fiber optics to the next level, Sébastien Bigo has revolutionized the world of telecommunications. His work carried out at Nokia Bell Labs has now set nearly 30 world records for the bandwidth and distance of optical communications. Some examples: the first communication transmitted at a rate of 10 terabits per second. The coherent optical networks he helped develop are now used every day for transmitting digital data. On November 21st he received the Grand Prix IMT-Académie des sciences for the entirety of his work at the official awards ceremony held at the Cupola of the Institut de France.

 

How did you start working on optical communications?

Sébastien Bigo: Somewhat by mistake. When I was in preparation class, I was interested in electronics. On the day of my entrance exams, I forgot to hand in an extra page where I had written a few calculations. When I received my results, I was one point away from making the cutoff for admission to the electronics school I wanted to attend — and would have been able to attend if I had handed in that paper. However, my exam results allowed me to attend the graduate school SupOptique, which recruits students using the same entrance exam, based on a slightly different scale. It’s funny actually: if I had handed in that paper, I would be working on electronics!

But were you at least interested in optics?

SB: I had a fairly negative image of optical telecommunications. At the time, the work of optics engineers consisted in simply finding the right lens for injecting light into a fiber. I didn’t think that was very exciting… When I contacted Alcatel in search of a thesis topic, I asked them if they had anything more advanced. I was interested in optical signal processing: what light can do to itself. They just happened to have a topic on this subject.

And from there, how did you begin your work in telecommunications?

SB: Through my work in optical signal processing, I came to work on pulses that are propagated without changing their shape: solitons. Thanks to these waves, I was able to make the first completely optical regeneration of a signal, which allows an optical signal to be sent further without converting it into an electrical signal. This enabled me to create the first demonstration of a completely optical transatlantic communication. Later, solitons were replaced by WDM technologies — multicolored pulses produced by a different laser beam for each color — which produce much better rates. This is when I truly got started in the telecommunications profession, and I started setting a series of 29 world records for transmission rates.

What do these records mean for you?  

SB: The competition to find the best rates is a global one. It’s always gratifying when we succeed before the others. This is what makes the game so interesting for me: knowing that I’m competing against people who are always trying to make things better by reinventing the rules every time. And winning the game has even greater merit since I don’t win every time. Pursuing records then leads to innovations. In the early 2000s, we developed the TeraLight fiber, which was a huge industrial success. This enabled us to continue to set remarkable records later.

Are some records more important than others?

SB: The first one was, when I succeeded in making the first transmission over a transatlantic distance at a rate of 20 gigabits per second, using optical periodic regeneration. Then there are records that are symbolic. Like when I successfully reached a rate of 10 terabits per second. No one had done this before, despite the fact that we had given the secret away shortly before, when we reached 5 terabits per second. And that time we finished our measurements at 7am on the first day of the conference where we would announce the record. I almost missed my flight because of it. The competition is so intense that we submit the results at the very last minute.

Is this quest for increasingly higher rates what led you to develop coherent optical networks?   

SB: I began working on coherent optical networks in 2006, when we realized that we had reached the limit of what we knew how to do. The records had allowed us to independently fine-tune elements that no one had put together before. By adapting our previous findings to modulation, receivers, signal processing, propagation and polarization, we created an optical system that is truly a cut above the rest, and it has become the new industry standard. This led to a new record being set, with the product of the speed and the propagation distance reaching over 100 petabits per second per kilometer [1 petabit = 1,000 terabits]. To achieve this, we transmitted 15.5 terabits per second over a distance of 7,200 kilometers. This is above all a perfect example of what a system is: a combination of elements that together are worth much more than the sum of each one separately.

What is your current outlook for the future?

SB: Today I am working on optical networks, which in a way are systems of systems. For a European network, I am focusing on what path to take in order for data transport to be as inexpensive and efficient as possible. I am convinced that this is the area in which major changes will occur in coming years. It is becoming difficult to increase the fibers’ capacity as we approach the Shannon limit. Therefore, to continue transmitting information, we need to think about how we can optimize the filling of communication channels. The goal is to transform the networks to introduce intelligence and make life easier for operators.

 

[divider style=”normal” top=”20″ bottom=”20″]

Biography of Sébastien Bigo

Sébastien Bigo, optical communications

Sébastien Bigo, 47, director of the IP and Optical Networks research group at Nokia Bell Labs, belongs to the great French school of optics applied to telecommunications. Through his numerous innovations, he has been and continues to be a global pioneer in high-speed fiber optic transmission.

The topics he has studied have been presented in 300 journal publications and at conferences. He has also filed 42 patents representing an impressive number of contributions to different aspects of the scientific field that he has had such a profound impact on. These multiple results have been cited over 8,000 times and have enabled 29 experimental demonstrations to take place, together constituting a world record in terms of bandwidth or transmission distance.

Some of the resultant innovations have generated significant economic activity. Particular examples include Teralight Fiber, that Sébastien Bigo helped develop, which was rolled out over several million kilometers, and coherent networks, which are now used by billions every week. These are certainly two of France’s most resounding successes in communication technology.

[divider style=”normal” top=”20″ bottom=”20″]

 

 

 

IMT Académie des Sciences awards

And the winners of the new IMT-Académie des Sciences Awards are…

At the start of 2017, IMT and the French Académie des Sciences created the Grand Prix Award and the Young Scientist Prize (with support from the Fondation Mines-Télécom) to reward exceptional European scientific contributions in the fields of digital technology, energy and the environment. These Prizes were awarded on Tuesday, November 21st at the official awards ceremony held in the Cupola of the Institut de France. We had the opportunity to interview the winners at the event.

 

Prix IMT Académie des sciences

Philippe Jamet, President of IMT; Pierre Rouchon and Sébastien Bigo, winners of the Grand Prix

 

On March 29th we announced the creation of an IMT-Académie des Sciences Prize in the following fields:

  • Sciences and technologies of the digital transformation in industry
  • Sciences and technologies of the energy transition
  • Environmental engineering

The Grand Prix (€30,000) honors a scientist who has made an outstanding contribution to one of these fields through a particularly remarkable body of work, while the Young Scientist Prize (€15,000) is in recognition of a scientist under 40 who has contributed to one these fields through a major innovation.

Last June the jury assessed and made a selection from among the 20 applications that were submitted, all of them very high-level. 13 submissions were in the running for the Grand Prix and 7 for the Young Scientist Award. The three 2017 winners best reflect the intentions that inspired the creation of these awards.

 

The “Grand Prix IMT-Académie des Sciences” was awarded to two winners in optics and mathematics

For this first edition, the jury selected two candidates for the Grand Prix IMT-Académie des Sciences: Sébastien Bigo of Nokia Bell Labs, and Pierre Rouchon of Mines ParisTech

– Sébastien Bigo, 47, director of the IP and Optical Networks research group at Nokia Bell Labs, belongs to the great French school of optics applied to telecommunications. Through his numerous innovations, he has been and continues to be a global pioneer in high-speed fiber optic transmission…

Read the interview with Sébastien Bigo on I’MTech

– Pierre Rouchon, 57, is a professor at Mines ParisTech and the director of the Mathematics and Systems research unit at the same school. He is a recognized specialist in Control Theory. He has made major scientific contributions to the three themes of this discipline: signage systems in connection with trajectory planning, quantum systems and invariant asymptomatic observers…

Read the interview with Pierre Rouchon on I’MTech

 

The “IMT-Académie des Sciences Young Scientist Prize” awarded in the field of cellulosic biomaterials

– Julien Bras, 39, has been a lecturer and research supervisor at Grenoble INP – Pagora since 2006, as well as being the deputy director of the LGP2 Paper Process Engineering Laboratory, after having begun his professional career as an engineer in a company in the paper industry in Italy and Finland. For over 15 years Julien Bras has been focusing his research on developing new, highly innovative engineering procedures, with the aim of creating a new generation of high-performance cellulosic biomaterials and developing the use of these agro-resources…

Read the interview with Julien Bras on I’MTech